YEAR 3 of 7 (2014) ANNUAL MONITORING REPORT HERMAN DAIRY STREAM AND WETLAND RESTORATION SITE

Alexander County, North Carolina EEP Project No. 94642 Full Delivery Contract No. 003271

Catawba River Basin
Cataloging Unit and Targeted Local Watershed
03050101120030

Submitted to: NCDENR Ecosystem Enhancement Program Raleigh, North Carolina

JANUARY 2015

YEAR 3 of 7 (2014) ANNUAL MONITORING REPORT HERMAN DAIRY STREAM AND WETLAND RESTORATION SITE

Alexander County, North Carolina EEP Project No. 94642 Full Delivery Contract No. 003271

Catawba River Basin
Cataloging Unit and Targeted Local Watershed
03050101120030

Prepared By:

Restoration Systems, LLC 1101 Haynes Street, Suite 211 Raleigh, North Carolina 27604

and

Axiom Environmental, Inc. 218 Snow Avenue Raleigh, North Carolina 27603

Submitted to:

NCDENR Ecosystem Enhancement Program Raleigh, North Carolina

JANUARY 2015

TABLE OF CONTENTS

1.0 EVECUTIVE CUMMARY	1
1.0 EXECUTIVE SUMMARY	
2.1 Vegetation Assessment	
2.2 Stream Assessment	
2.3 Wetland Assessment	
2.4 Biotic Community Changes	
3.0 REFERENCES	6
FIGURES	
Figure 1. Site Location	Appendix A
Figures 2, 2A-2B. Consolidated Current Conditions Plan View	
Figure E1. Annual Climatic Data vs. 30-year Historic Data	
Figure F1. Preconstruction Benthic Station Locations	Appendix F
APPENDICES	
APPENDIX A. FIGURES	
Figure 1. The Site Location	
Figures 2, 2A-2B. Consolidated Current Conditions Plan Vie	èW .
APPENDIX B. GENERAL TABLES	
Table 1. Project Restoration Components	
Table 2. Project Activity and Reporting History	
Table 3. Project Contacts Table	
Table 4. Project Attributes Table	
APPENDIX C. VEGETATION ASSESSMENT DATA	
Table 5. Vegetation Plot Mitigation Success Summary Table	
Table 6. CVS Vegetation Metadata Table	
Table 7. CVS Stem Count Total and Planted by Plot and Species	
Vegetation Plot Photographs	
APPENDIX D. STREAM ASSESSMENT DATA	
Stream Station Photos	
Table 8a-8d Visual Assessment Tables	

Cross-section Plots

Longitudinal Profile Plots

Table 9. Verification of Bankfull Events

Tables 10a-10b. Baseline Stream Data Summary

Tables 11a-11c. Monitoring Data-Dimensional Data Summary

APPENDICES (continued)

APPENDIX E. HYDROLOGY DATA

Table 12. Wetland Hydrology Criteria Attainment 2014 Groundwater Gauge Graphs Figure E1. Annual Climatic Data vs. 30-year Historic Data

APPENDIX F. BENTHIC DATA

2014 Benthic Data Lab Results 2014 Habitat Assessment Field Datasheets

1.0 EXECUTIVE SUMMARY

Restoration Systems, LLC has established the Herman Dairy Stream and Wetland Mitigation Site (Site) located approximately 1.5 miles northwest of Taylorsville, in central Alexander County within 14-digit Cataloging Unit and Targeted Local Watershed 03050101120030 of the Catawba River Basin. The Site encompasses approximately 31.12 acres of land previously used for agricultural row crop production and the spray application of sludge from a lagoon associated with a dairy cattle operation. The Site was identified to assist the North Carolina Ecosystem Enhancement Program (NCEEP) in meeting its stream and wetland restoration goals. This report (compiled based on EEP's *Guidance and Content Requirements for EEP Monitoring Reports* Version 1.2.1 dated 12/1/09) serves as the Year 3 (2014) annual monitoring report.

The primary goals and objectives of this stream and wetland restoration project focused on improving water quality, enhancing flood attenuation, and restoring wildlife habitat and will be accomplished by the following.

- 1. Removing nonpoint sources of pollution associated with agricultural production including a) cessation of broadcasting sludge, fertilizer, pesticides, and other agricultural materials into and adjacent to Site streams/wetlands and b) restoration of a forested riparian buffer adjacent to streams and wetlands to treat surface runoff.
- 2. Reducing sedimentation within onsite and downstream receiving waters through a) reduction of bank erosion, vegetation maintenance, and plowing to Site streams and wetlands and b) restoration of a forested riparian buffer adjacent to Site streams and wetlands.
- 3. Reestablishing stream stability and the capacity to transport watershed flows and sediment loads by restoring stable dimension, pattern, and profile supported by natural in-stream habitat and grade/bank stabilization structures.
- 4. Promoting floodwater attenuation by a) reconnecting bankfull stream flows to the abandoned floodplain, b) restoring secondary, entrenched tributaries thereby reducing floodwater velocities within smaller catchment basins, c) restoring depressional floodplain wetlands to increase the floodwater storage capacity within the Site, and d) revegetating Site floodplains to increase frictional resistance on floodwaters crossing Site floodplains.
- 5. Improving aquatic habitat by enhancing stream bed variability and the use of in-stream structures.
- 6. Providing a terrestrial wildlife corridor and refuge in an area extensively developed for agricultural production.
- 7. Restoring and reestablishing natural community structure, habitat diversity, and functional continuity.
- 8. Enhancing and protecting the Site's full potential of stream and wetland functions and values in perpetuity.

<u>Vegetation Success Criteria</u>: An average density of 320 stems per acre of Characteristic Tree Species must be surviving in the first three monitoring years. Subsequently, 290 Characteristic Tree Species per acre must be surviving in year 4, 260 Characteristic Tree Species per acre in year 5, and 210 Characteristic Tree Species per acre in year 7. No single volunteer species (most notably red maple, loblolly pine, and sweet gum) will comprise more than 20 percent of the total composition at years 3, 5, or 7. If this occurs, remedial procedures/protocols outlined in the contingency plan will be implemented. During years 3, 5, and 7, no single volunteer species, comprising over 20 percent of the total composition, may be more than twice the height of the planted trees. If this occurs, remedial procedures outlined in the contingency plan will be

implemented. If, within the first 3 years, any species exhibits greater than 50 percent mortality, the species will either be replanted or an acceptable replacement species will be planted in its place as specified in the contingency plan.

<u>Vegetation Results</u>: Vegetation sampling across the Site was above the required average density with 465 planted stems per acre surviving. In addition, 9 out of 10 individual plots exceeded success criteria, with plot 4 being only one stem shy of the required stem density. The number of native tree and shrub species observed in plots ranged from three (Plot 4) to seven (Plot 5), with 16 total native species observed. Treatment for invasive species, primarily Chinese privet (*Ligustrum sinense*) was initiated prior to construction and will continue as necessary, primarily within areas denoted on Figures 2 and 2A-2B (Appendix A).

Replanting occurred during the winter of 2013/2014 in the southeastern portion of the Site between UT2 and UT3 with 3-gallon containerized trees as follows. Newly planted stems are generally viable and vigorous in year 3 (2014).

175 Tulip poplar (*Liriodendron tulipifera*)

150 Ironwood (Carpinus caroliniana)

175 American elm (Ulmus americana)

500 TOTAL

Stream Success Criteria: Success criteria for stream restoration will include 1) successful classification of the reach as a functioning stream system (Rosgen 1996) and 2) channel variables indicative of a stable stream system. The channel configuration will be measured on 3000 linear feet of stream and 20 cross-sections on an annual basis in order to track changes in channel geometry, profile, or substrate. These data will be utilized to determine the success in restoring stream channel stability. Specifically, the width-to-depth ratio and bank-height ratios should be indicative of a stable or moderately unstable channel with minimal changes in cross-sectional area, channel width, and/or bank erosion along the monitoring reach. In addition, channel abandonment and/or shoot cutoffs must not occur and sinuosity values must remain relatively constant. Visual assessment of in-stream structures will be conducted to determine if failure has occurred. Failure of a structure may be indicated by collapse of the structure, undermining of the structure, abandonment of the channel around the structure, and/or stream flow beneath the structure.

Stream Results: As a whole, monitoring measurements indicate there have been minimal changes in both the longitudinal profile and cross-sections as compared to as-built data. The as-built channel geometry compares favorably with the emulated, stable E/C type stream reach as set forth in the detailed mitigation plan and construction plans. Current monitoring has demonstrated dimension, pattern, and profile were stable over the course of the monitoring period. Pebble counts were performed at six cross sections; 3 on UT1, 2 on UT2, and 1 on UT3. These pebble counts provide a representative sample of the site substrate. A small remnant beaver dam was observed on UT1 allowing some finer particles (sand, silt/clay) to settle and cause slight aggradation on this reach. No evidence of long-term inundation was observed, and it is expected that these fine particles will be moved through the site and should not pose any future problems. No stream problem areas were noted during Year 3 (2014) monitoring.

Hydrology Success Criteria: According to the *Soil Survey of Alexander County*, the growing season for Alexander County as recorded in Hickory, North Carolina during the period from 1951-1984 is from March 20-November 9 (235 days) (USDA 1995). Year 1 (2012) groundwater gauge installation occurred between March 30 and April 4, 2012; therefore, given the date of groundwater gauge installation and the initiation of

monitoring, Year 1 groundwater monitoring utilized the published growing season dates from the county soil survey for success criteria. However, in future monitoring years, if soil temperatures and/or vegetative growth (bud burst) is documented, project gauge hydrologic success will be determined using dates from February 1-November 9 (282 days) to more accurately represent the period of biological activity (see following "Summary of Hydrology Success Criteria by Year" table.

Target hydrological characteristics include saturation or inundation for 8 percent of the monitored period, during average climatic conditions. During years with atypical climatic conditions, groundwater gauges in reference wetlands may dictate threshold hydrology success criteria (75 percent of reference). These areas are expected to support hydrophytic vegetation. If wetland parameters are marginal as indicated by vegetation and/or hydrology monitoring, a jurisdictional determination will be performed.

Summary of Hydrology Success Criteria by Year

Year	Soil Temperatures/Date Bud	Monitoring Period Used for	8 Percent of Monitoring
	Burst Documented	Determining Success	Period
2012 (Year 1)		March 20-November 9 (235 days)	19 days
2013 (Year 2)	No bud burst during February 13-14, 2013 Site visit	March 20-November 9 (235 days)	19 days
2014 (Year 3)	No bud burst during February site visit	March 20-November 9 (235 days)	19 Days
2015 (Year 4)			
2016 (Year 5)			

<u>Hydrology Results</u>: All ten Site groundwater monitoring gauges and the reference gauge exhibited inundated/saturated within 12 inches of the surface for greater than 8 percent of the growing season. All gauges were well above success criteria for monitoring Year 3 (2014).

Benthics: Habitat Assessment Field Data Sheet scores for UT 1 increased from a total score of 45 prior to restoration to 76 after three annual monitoring years. Similarly, UT 2 improved from a score of 36 to 78 and UT3 improved from a score of 21 to 81 after three annual monitoring years. North Carolina Biotic Index (NCBI) assigned value for UT1 (7.76) was lower in Year 3 (2014) than in previous monitoring years, indicating a slight improvement; however, the score remains in the range of values for *Poor* biotic indices (NCDWO, 2011). This *Poor* classification can be attributed to the increase in fine substrate between Year 2 (2013) and Year 3 (2014) due to a remnant beaver dam observed in early 2014. It is expected that these particles will be moved through the site and should not pose further problems for benthic macroinvertebrate communities. NCBI assigned value for UT2 (9.45) was higher in Year 3 (2014) than in previous monitoring years, indicating a decline. This decline can be attributed to slightly below average precipitation during the winter and spring of 2014 (Figure E1, Appendix E). Both Year 3 (2014) NCBI values indicate a decline from the preconstruction values. This is expected just three years after channel construction. The habitat assessment scores have gradually improved since construction, and therefore, the NCBI assigned values are expected to improve in the future. No benthic samples were obtained from UT3 because the stream was dry at the time of the site visit. Benthic results and Habitat Assessment Field Data Sheets are included in Appendix F.

<u>In summary</u>: Site vegetation, streams, and wetland hydrology met success criteria for Year 3 (2014) monitoring. Summary information and data related to the occurrence of items such as beaver or encroachment and statistics related to performance of various project and monitoring elements can be found

in tables and figures within this report's appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Document (formerly Mitigation Plan) and in the Mitigation Plan (formerly called the Restoration Plan) documents available on EEPs website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

2.0 METHODOLOGY

Monitoring of the Site's restoration efforts will be performed until agreed upon success criteria are fulfilled. Monitoring is proposed for the stream channel, riparian vegetation, and hydrology (Figure 2, Appendix A). Stream morphology is proposed to be monitored for a period of five years. Riparian vegetation is proposed to be monitored for a period of seven years. Wetland hydrology is proposed to be monitored for a period of five years; at which time a request will be made to the IRT to discontinue groundwater hydrology monitoring. The IRT reserves the right to request additional groundwater monitoring if it deems necessary. Monitoring reports of the data collected will be submitted to the IRT no later than December of each monitoring year.

2.1 Vegetation Assessment

After planting was completed, an initial evaluation was performed to verify planting methods were successful and to determine initial species composition and density. Ten sample vegetation plots (10-meter by 10-meter) were installed and measured within the Site as per guidelines established in *CVS-EEP Protocol for Recording Vegetation, Version 4.2* (Lee et al. 2008). Plots were measured in July 2014 for Year 3 monitoring. Vegetation plots are permanently monumented with 4-foot metal garden posts at each corner. In each sample plot, vegetation parameters to be monitored include species composition and species density. Visual observations of the percent cover of shrub and herbaceous species will also be documented by photograph. Vegetation plot information can be found in Appendix C.

2.2 Stream Assessment

Restored stream reaches are proposed to be monitored for geometric activity for five years. Annual fall monitoring will include development of 20 channel cross-sections on riffles and pools and a water surface profile of the channel. The data will be presented in graphic and tabular format. Data to be presented will include 1) cross-sectional area, 2) bankfull width, 3) average depth, 4) maximum depth, 5) width-to-depth ratio, 6) water surface slope, and 7) sinuosity. The stream will subsequently be classified according to stream geometry and substrate (Rosgen 1996). Significant changes in channel morphology will be tracked and reported by comparing data in each successive monitoring year. Stream data can be found in Appendix D.

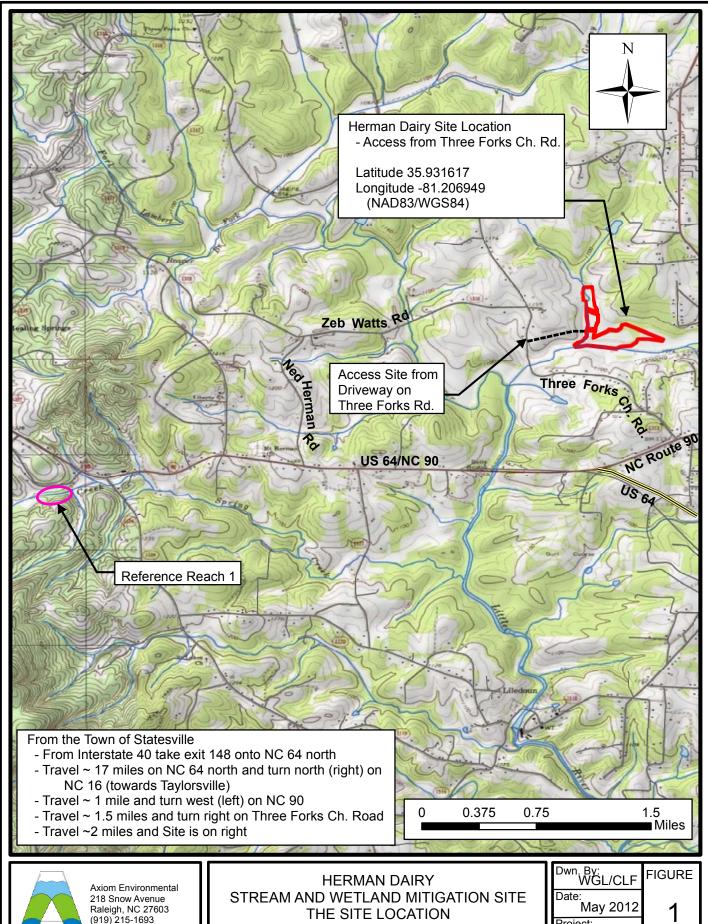
2.3 Wetland Assessment

Ten groundwater monitoring gauges were installed within Site wetland restoration areas and one additional gauge was installed in a reference wetland to monitor groundwater hydrology (Figure 2, Appendix A). Hydrological sampling will continue for five years throughout the growing season at intervals necessary to satisfy the hydrology success criteria within each design unit (USEPA 1990). In addition, an onsite rain gauge will document rainfall data for comparison of groundwater conditions with extended drought conditions. Finally, groundwater gauges located within riverine wetlands adjacent to restored stream reaches will supplement crest gauge measurements to confirm overbank flooding events. Graphs of groundwater hydrology and precipitation from a nearby rain station are included in Appendix E.

2.4 Biotic Community Changes

Changes in the biotic community are anticipated from a shift in habitat opportunities as tributaries are restored. In-stream, biological monitoring is proposed to track changes during the monitoring period. The benthic macroinvertebrate community will be sampled using North Carolina Division of Water Quality (NCDWQ) protocols found in the Standard Operating Procedures for Benthic Macroinvertebrates (NCDWQ 2006) and Benthic Macroinvertebrate Protocols for Compensatory Stream Restoration Projects (NCDWQ

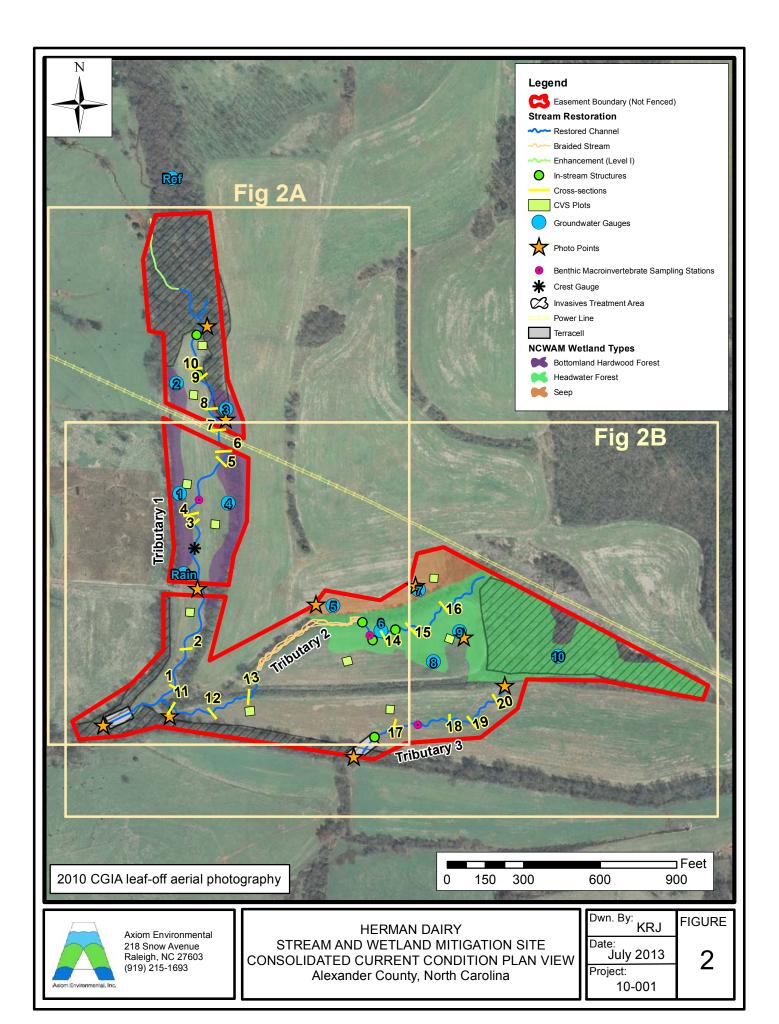
2001). Biological sampling of benthic macroinvertebrates will be used to compare preconstruction baseline data with post-construction restored conditions.

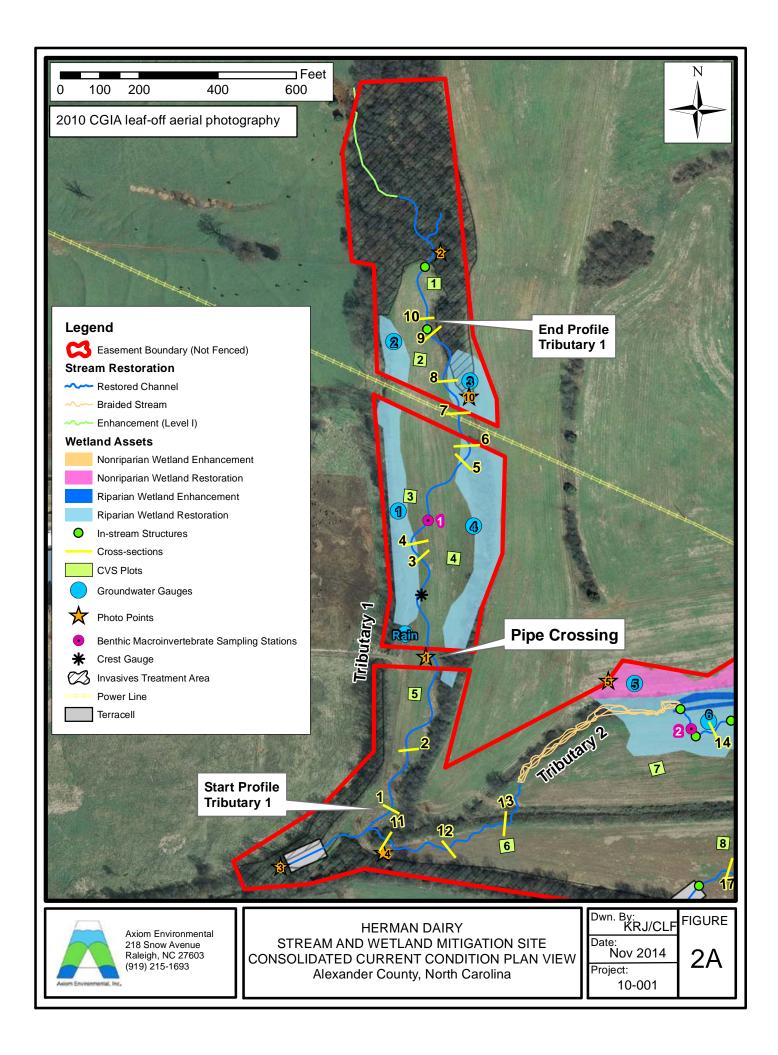

Benthic macroinvertebrate monitoring locations were established within Site restoration reaches. Post-construction collections occurred in approximately the same locations as pre-construction sampling; however, sampling was not possible in UT 3 in Year 3 (2014) due to lack of stream flow. Benthic macroinvertebrate samples were collected using the Qual-4 collection method. Sampling techniques of the Qual-4 collection method consist of kick nets, sweep nets, leaf packs, and visual searches. Post-construction biological sampling occurred on June 27, 2014 for Year 3 monitoring; post-construction monitoring will occur in June of each monitoring year. Identification of collected organisms was performed by Pennington and Associates, a NCDWQ certified laboratory. Results and Habitat Assessment Field Data Sheets are enclosed in Appendix F.

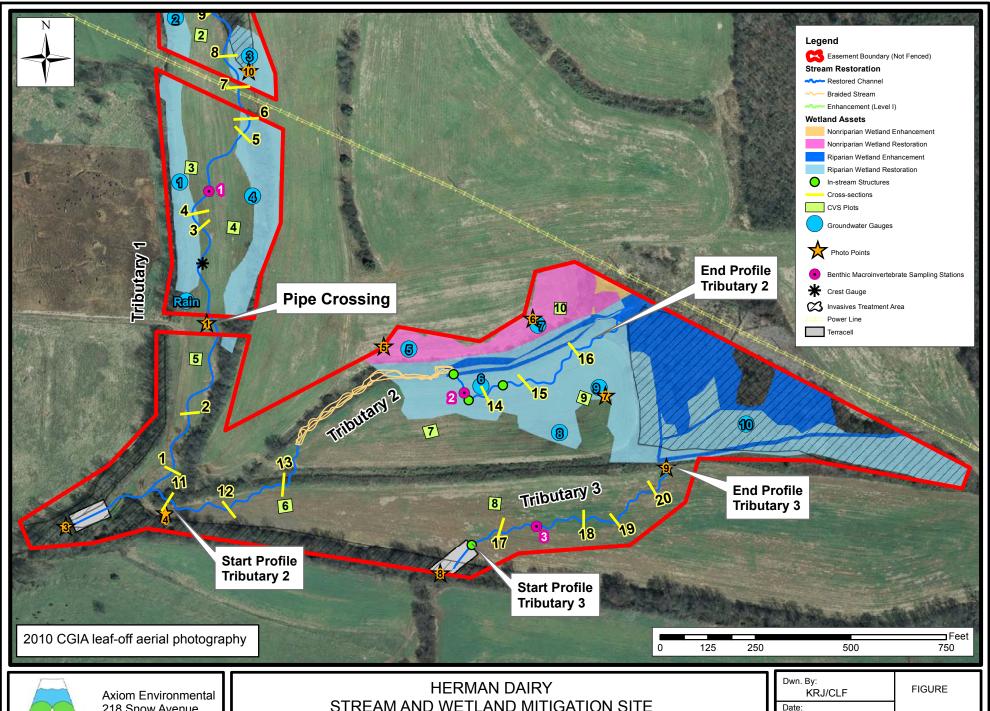
3.0 REFERENCES

- Lee, M.T., R.K. Peet, S.D. Roberts, and T.R. Wentworth. 2008. CVS-EEP Protocol for Recording Vegetation. Version 4.2. North Carolina Department of Environment and Natural Resources, Ecosystem Enhancement Program. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2001. Benthic Macroinvertebrate Monitoring Protocols for Compensatory Mitigation. 401/Wetlands Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- North Carolina Division of Water Quality (NCDWQ). 2011. Standard Operating Procedures for Collection and Analysis of Benthic Macroinvertebrates (Version 3.0). Biological Assessment Unit, Department of Environment and Natural Resources. Raleigh, North Carolina.
- Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina: Third Approximation. North Carolina Natural Heritage Program, Division of Parks and Recreation, North Carolina Department of Environment, Health, and Natural Resources. Raleigh, North Carolina.
- United States Department of Agriculture (USDA). 1995. Soil Survey of Alexander County, North Carolina. Natural Resources Conservation Service, United States Department of Agriculture.
- United States Environmental Protection Agency (USEPA). 1990. Mitigation Site Type Classification (MiST). USEPA Workshop, August 13-15, 1989. EPA Region IV and Hardwood Research Cooperative, NCSU, Raleigh, North Carolina.
- Weather Underground. 2013. Station at Hickory Airport, North Carolina. (online). Available: http://www.wunderground.com/history/airport/KHKY/2013/10/31/DailyHistory.html [October 31, 2013]. Weather Underground.

Appendix A. Figures


Figure 1. The Site Location Figures 2, 2A-2B. Consolidated Current Conditions Plan View




218 Snow Avenue Raleigh, NC 27603 (919) 215-1693

Alexander County, North Carolina

WGL/CLF
Date: May 2012
Project:
10-016

218 Snow Avenue Raleigh, NC 27603 (919) 215-1693

STREAM AND WETLAND MITIGATION SITE CONSOLIDATED CURRENT CONDITION PLAN VIEW Alexander County, North Carolina

Nov 2014 Project: 10-001

2B

Appendix B. General Project Tables

Table 1. Project Restoration Components
Table 2. Project Activity and Reporting History
Table 3. Project Contacts Table
Table 4. Project Attribute Table

Table 1. Project Restoration Components Herman Dairy Restoration Site

			Mitigation	Credits							
Stream			Rip	arian Wetland		Nonriparian Wetland					
Restoration	Restoration Equiva	lent	Restoration	Restoration E	quivalent	Restoration Restoration Equiva					
4780	0		7.2	1.1		1.2	0.05				
			Projects Cor	nponents							
Station Range	Existing Linear Footage/ Acreage	Priority Approach	Restoration/ Restoration Equivalent	Restoration Linear Footage/ Acreage	Mitigation Ratio		Comment				
UT1 10+00-31+67.8* UT1A 10+00-10+85.71 UT2 10+00-16+69.04, 21+50.67-27+10.09 UT3 10+00-17+28.39	4540	I	Restoration	3997	1:1	Priority I stream restoration through constructi stable channel at the historic floodplain elevat					
UT2 16+69.04-21+50.67 UT3 upper 81.10 linear feet			Restoration	563	1:1	across riparian wet	oration by redirecting diffuse flow lands. Linear footage of stream is traight line valley distance.				
UT1 upper 330.00 linear feet	330	Level I	Enhancement	330	1.5:1	Level I stream enhancement by altering profile at dimension, cessation of current land use practice removing invasive species, and planting with nati forest vegetation.					
Riparian Wetlands	0		Restoration	7.2	1:1	Restoration of ripar as the result of str abandoned chann	rian wetlands within the floodplain ream restoration activities, filling nels and ditches, removing spoil ting with native forest vegetation.				
Riparian Wetlands	2.2		Enhancement	2.2	2:1	Enhancement characterized by denative	of existing riparian wetlands listurbed pasture by planting with re forest vegetation.				
Nonriparian Wetlands	0		Restoration	1.2	1:1	castings, filling aba soils along the slop	iparian wetlands by removing spoil ndoned ditches to rehydrate hydric pe, eliminating land use practices, with native forest vegetation.				
Nonriparian Wetlands	0.1		Enhancement	0.1	2:1	characterized by d	f existing nonriparian wetlands listurbed pasture by planting with ve forest vegetation.				
			Component S	ummation							
Restoration Level	Stream (linear foo	otage)	Riparian V	Wetland (acreage)		Nonriparian V	Wetland (acreage)				
Restoration	4560			7.2			1.2				
Enhancement (Level 1)	330										
Enhancement				2.2			0.05				
Totals	4890			9.4		1.25					
*Restoration linear footage	4780 SMUs			parian WMUs			parian WMUs				

^{*}Restoration linear footage excludes 145.76 linear feet of stream located within the utility easement and 67.79 linear feet of stream located within a culverted crossing, which are both excluded from the easement.

Table 2. Project Activity and Reporting History Herman Dairy Restoration Site

	Data Collection	Completion
Activity or Deliverable	Complete	or Delivery
Technical Proposal (RFP No. 16-002830)		March 2010
EEP Contract No. 003271		July 23, 2010
Restoration Plan		January 2011
Construction Plans		August 2011
Construction Earthwork		March 2012
Invasive Species Treatment		Ongoing
As-Built Documentation		June 2012
Year 1 (2012) Annual Monitoring	September 2012	October 2012
Year 2 (2013) Annual Monitoring	October 2013	November 2013
Replanting		Late 2013/Early 2014
Year 3 (2014) Annual Monitoring	November 2014	January 2015

Table 3. Project Contacts Table Herman Dairy Restoration Site

Herman Dairy Restoration Site	·
Full Delivery Provider	Restoration Systems
	1101 Haynes Street, Suite 211
	Raleigh, North Carolina 27604
	George Howard and John Preyer
	919-755-9490
Designer	Axiom Environmental, Inc.
	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis
	919-215-1693
Construction Plans and Sediment and	Sungate Design Group, PA
Erosion Control Plans	915 Jones Franklin Road
	Raleigh, NC 27606
	W. Henry Wells, Jr, PE 919-859-2243
Construction and Planting Contractor	Land Mechanic Designs
	780 Landmark Road
	Willow Spring, NC 27592
	Lloyd Glover 919-639-6132
As-built Surveyor	K2 Design Group
	5688 US Highway 70 East
	Goldsboro, NC 27534
	John Rudolph 919-751-0075
Baseline Data Collection and Annual	Axiom Environmental, Inc.
Monitoring	218 Snow Avenue
	Raleigh, NC 27603
	Grant Lewis 919-215-1693

Table 4. Project Attribute Table Herman Dairy Restoration Site

Herman Dairy Restoration Site	A 1	1 C / N /1 C	۱ 1'							
Project County		der County, North C								
Physiographic Region	No	orthern Inner Piedmo	ont							
Ecoregion	Carolina Slate Belt									
Project River Basin	Catawba									
USGS HUC for Project (14 digit)		03050101120030								
NCDWQ Sub-basin for Project		03-08-32								
Identify planning area (LWP, RBRP, other)?	Yes – Upper Cata	wba River Basin Res 2009	storation Priorities							
WDC Class (Warms, Co. 1, Co.14)										
WRC Class (Warm, Cool, Cold)		Warm								
% of project easement fenced or demarcated		100								
Beaver activity observed during design phase?	T	Yes								
	Unnamed	l Tributaries to Mu	ddy Fork							
	UT 1	UT 2	UT 3							
Drainage Area	1.0	0.06	0.04							
Stream Order (USGS topo)	2nd	1st	1st							
Restored Length (feet)	2156	1684	760							
Perennial (P) or Intermittent (I)	P	P	I							
Watershed Type	Rural	Rural	Rural							
Watershed impervious cover	<5%	<5%	<5%							
NCDWQ AU/Index number	11-69-4	11-69-4	11-69-4							
NCDWQ Classification	С	С	С							
303d listed?	No	No	No							
Upstream of a 303d listed	Yes	Yes	Yes							
Reasons for 303d listed segment	aquatic	aquatic	aquatic							
	life/sediment	life/sediment	life/sediment							
Total acreage of easement	31.12	31.12	31.12							
Total existing vegetated acreage of easement	8	8	8							
Total planted restoration acreage	31.5	31.5	31.5							
Rosgen Classification of preexisting	Cd5	Fc5/6	Fc5/6							
Rosgen Classification of As-built	E/C 4/5	E/C 4/5	E/C 4/5							
Valley type	VIII	VIII	VIII							
Valley slope	0.0066	0.0052	0.0013							
Cowardin classification of proposed	R3UB1/2	R3UB1/2	R4SB3/4							
Trout waters designation	NA	NA	NA							
Species of concern, endangered etc.	NA	NA	NA							
Dominant Soil Series	Codorus/Hatboro	Codorus/Hatboro Codorus/Hatbo								

Appendix C. Vegetation Assessment Data

Table 5. Vegetation Plot Mitigation Success Summary Table
Table 6. CVS Vegetation Metadata Table
Table 7. CVS Stem Count Total and Planted by Plot and Species
Vegetation Plot Photographs

Table 5. Vegetation Plot Mitigation Success Summary Table

Vegetation Plot ID	Vegetation Survival Threshold Met?	Tract Mean
1	Yes	
2	Yes	
3	Yes	
4	No	
5	Yes	000/
6	Yes	90%
7	Yes	
8	Yes	
9	Yes	
10	Yes	

Table 6. CVS Vegetation Metadata Table

Table 6. Cv5 vegetation Metadata	
Report Prepared By	Corri Faquin
Date Prepared	7/7/2014 14:25
database name	RS-HermanDiary-2014-A-v2.3.1.mdb
database location	\\AE-SBS\RedirectedFolders\KJernigan\Desktop
computer name	KEENAN-PC
file size	51687424
DESCRIPTION OF WORKSHEETS IN	THIS DOCUMENT
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted
Proj, total stems	stems, and all natural/volunteer stems.
Plots	List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).
Vigor	Frequency distribution of vigor classes for stems for all plots.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
	List of most frequent damage classes with number of occurrences and percent of total stems impacted by
Damage	each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are
Planted Stems by Plot and Spp	excluded.
	A matrix of the count of total living stems of each species (planted and natural volunteers combined) for
ALL Stems by Plot and spp	each plot; dead and missing stems are excluded.
PROJECT SUMMARY	
Project Code	Herman
project Name	Herman Dairy
Description	Stream and wetland restoration Alexander County NC
River Basin	Catawba
Sampled Plots	10

Table 7. CVS Stem Count Total and Planted by Plot and Species

Project Name: Herman Dairy

-																Current	Plot D	ata (M	Y3 2014	.)												
			Her	man-P	0001	Her	man-P-	0002	Herr	nan-P-0	003	Her	man-P-	0004	Heri	man-P-(0005	Her	man-P-	0006	Her	man-P-	0007	Her	man-P	-0008	Her	man-P-0	0009	Her	man-P-0	010
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Г
Acer negundo	boxelder	Tree																		38						1	4					
Acer rubrum	red maple	Tree						14															2	2					4	ŕ		
Betula nigra	river birch	Tree	3	3	3	4	4	. 4	1	1	1	1	1	. 1				1	. 1	1				2	2 2	2 2	. 2	2	2	. 2	2	2
Carpinus caroliniana	American hornbeam	Tree	1	1	. 1										2	2	2															
Carya	hickory	Tree													2	2	2															
Cephalanthus occidentalis	common buttonbush	Shrub																			1	1	. 1	. 1	. :	1 1						1
Cornus amomum	silky dogwood	Shrub	2	2 2	2 2																			1	. :	1 1						
Fraxinus pennsylvanica	green ash	Tree	1	1	. 1	. 1	1	1	. 4	4	4	3	3	3	1	1	1	. 3	3	3	4	4	. 4	1 6	6 (5 6	, 9	9	9	2	2	2
Liriodendron tulipifera	tuliptree	Tree	1	1	. 1	. 1	1	7										6	6	6	2	2	2 2	2			3	3	3	, 1	1	1
Nyssa	tupelo	Tree							6	6	6				6	6	6													3	3	3
Platanus occidentalis	American sycamore	Tree																1	. 1	1	-						1	1	30	,		
Quercus	oak	Tree																														
Quercus nigra	water oak	Tree													2	2	2															
Quercus pagoda	cherrybark oak	Tree	2	2 2	2 2	. 2	2	. 2	1	1	1	3	3	3	2	2	2	. 3	3	3	2	2	2 2	2 3	3	3	. 1	1	1	. 2	2	2
Quercus phellos	willow oak	Tree													1	1	1															
Ulmus americana	American elm	Tree																														
Unknown		Shrub or Tree																														
		Stem count	10	10	10	8	8	28	12	12	12	7	7	7	16	16	16	14	14	52	9	g	11	13	13	3 14	16	16	49	10	10	11
		size (ares))	1			1			1			1			1			1			1			1			1			1	
		size (ACRES)		0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02			0.02	
		Species count	: 6	5 6	6	4	4	. 5	4	4	4	3	3	3	7	7	7	5	5	ϵ	4	4	5	5	5 !	5 6	, 5	5	6	, 5	5	6
		Stems per ACRE	404.7	404.7	404.7	323.7	323.7	1133	485.6	485.6	485.6	283.3	283.3	283.3	647.5	647.5	647.5	566.6	566.6	2104	364.2	364.2	445.2	526.1	526.3	L 566.6	647.5	647.5	1983	404.7	404.7	445.2

Color for Density

Exceeds requirements by 10% PnoLS = Planted excluding livestakes Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% P-all = Planting including livestakes

T = All planted and natural recruits including livestakes

Fails to meet requirements by more than 10% T includes natural recruits

Table 7. CVS Stem Count Total and Planted by Plot and Species (continued)

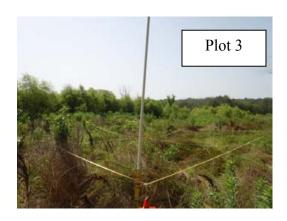
Project Name: Herman Dairy

			Ann	ual Mea	ans										
			M	Y3 (201	.4)	М	Y2 (201	.3)	M	Y1 (201	L2)	MY0 (2012)			
Scientific Name	Common Name	Species Type	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	PnoLS	P-all	Т	
Acer negundo	boxelder	Tree			39			9			15				
Acer rubrum	red maple	Tree			20			21			7				
Betula nigra	river birch	Tree	16	16	16	18	18	18	19	19	19	41	. 41	. 41	
Carpinus caroliniana	American hornbeam	Tree	3	3	3	2	2	2	2	2	2	2	3	3	
Carya	hickory	Tree	2	2	2	2	2	2	4	4	4	ŀ	1	1	
Cephalanthus occidentalis	common buttonbush	Shrub	2	2	3	2	2	2					1	1	
Cornus amomum	silky dogwood	Shrub	3	3	3	3	3	3	2	2	2	2	2 2	2 2	
Fraxinus pennsylvanica	green ash	Tree	34	34	34	34	34	34	33	33	33	32	32	32	
Liriodendron tulipifera	tuliptree	Tree	14	14	20	15	15	19	17	17	18	25	25	25	
Nyssa	tupelo	Tree	15	15	15	16	16	16	14	14	14	Į.			
Platanus occidentalis	American sycamore	Tree	2	2	31	2	2	36			46	1	. 1	. 1	
Quercus	oak	Tree							1	1	1	. 6	6	6	
Quercus nigra	water oak	Tree	2	2	2	2	2	2	2	2	2				
Quercus pagoda	cherrybark oak	Tree	21	21	21	22	22	22	22	22	22	23	23	23	
Quercus phellos	willow oak	Tree	1	1	1	1	1	1	1	1	1				
Ulmus americana	American elm	Tree										2	2 2	. 2	
Unknown		Shrub or Tree				1	1	1	1	1	1	. 10	10	10	
		Stem count	115	115	210	120	120	188	118	118	187	145	145	145	
		size (ares)		10			10			10	•	10			
	size (A			0.25		0.25				0.25			0.25		
Species			12	12	14	13	13	15	12	12	15	10	10	10	
	9	Stems per ACRE		465.4	849.8	485.6	485.6	760.8	477.5	477.5	756.8	586.8	586.8	586.8	

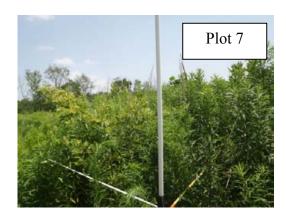
Color for Density

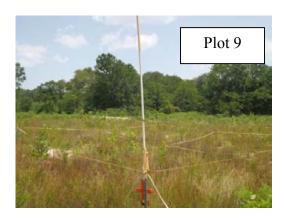
Exceeds requirements by 10% PnoLS = Planted excluding livestakes Exceeds requirements, but by less than 10% Fails to meet requirements, by less than 10% P-all = Planting including livestakes

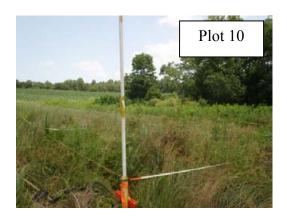
T = All planted and natural recruits including livestakes


Fails to meet requirements by more than 10% T includes natural recruits

Herman Dairy 2014 (Year 3) Vegetation Monitoring Photographs Taken July 2014







Herman Dairy 2014 (Year 3) Vegetation Monitoring Photographs Taken July 2014 (continued)



Appendix D. Stream Assessment Data

Stream Station Photos
Table 8a-8c. Visual Assessment Tables
Table 9. Verification of Bankfull Events
Tables 10a-10c. Baseline Stream Data Summary
Tables 11a-11e. Monitoring Data-Dimensional Data Summary
Longitudinal Profile Plots
Cross-section Plots
Substrate Plots

Herman Dairy Fixed Station Photographs Taken October 8, 2014

Herman Dairy Fixed Station Photographs (continued) Taken October 8, 2014

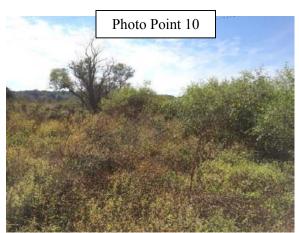


Table 8A <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Tributary 1

Assessed Length 1374

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		Degradation - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	19	19			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	20	20			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	100	100			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		2. Thalweg centering at downstream of meander (Glide)	100	100			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	2	2			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	2	2			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	2	2			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	2	2			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	2	2			100%			

Table 8B <u>Visual Stream Morphology Stability Assessment</u>

Reach ID Tributary 2
Assessed Length 1522

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	Aggradation - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	39	39			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	37	37			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	100	100			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		2. Thalweg centering at downstream of meander (Glide)	100	100			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse	0	100%			100%			
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	3	3			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	3	3			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	3	3			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	3	3			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	3	3			100%			

Table 8C <u>Visual Stream Morphology Stability Assessment</u>
Reach ID Tributary 3

Assessed Length 644

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Stabilizing Woody	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	Vertical Stability (Riffle and Run units)	<u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars)			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	Texture/Substrate - Riffle maintains coarser substrate	27	27			100%			
	3. Meander Pool Condition	Depth Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	27	27			100%			
		Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle)	100	100			100%			
	4.Thalweg Position	Thalweg centering at upstream of meander bend (Run)	100	100			100%			
		Thalweg centering at downstream of meander (Glide)	100	100			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%			100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does NOT include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%			100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%			100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	8	8			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	8	8			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	8	8			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	8	8			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio ≥ 1.6 Rootwads/logs providing some cover at base-flow.	8	8			100%			

Table 9. Verification of Bankfull Events

Date of Data Collection	Date of Occurrence	Method	Photo (if available)
May 11, 3013	May 6, 2013	Bankfull event documented when sediment deposits were observed on top of banks after 3.00 inches of rain was documented* over a two-day period.	
July 18, 2013	June 6, 2013	Bankfull event documented after wrack was observed on top of bank and throughout floodplain after 4.27 inches of rain was documented* over a two-day period.	1-2
November 19, 2014	August 11, 2014	Bankfull event likely occurred after 3.61 inches of rain over a two-day period that was preceded by 0.56 inches and followed by an additional 0.78 inches as documented by an onsite rain gauge.	

^{*}Weather Underground (2013)

Table 10A. Baseline Morphology and Hydraulic Summary Herman Dairy UT 1

Parameter	USGS Gage Data			Pre-Existing Condition			Project Reference Stream UT Catawba*			Project Reference Reach 1			Design			As-built		
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USG	S gage d	lata is	16	19	18	9	12	10	9	10	10	16	18	17	15.5	16.4	16.1
Floodprone Width (ft)	unava	ailable fo	or this	26	150	150	25	150	50	22	25	24			150			250
BF Cross Sectional Area (ft2)		project				20.2			10.9			11.8	36	53	20.2	14	18.2	16.4
BF Mean Depth (ft)				1.1	1.3	1.2	1.1	1.3	1.1	1.2	1.3	1.3	1.1	1.3	1.2	0.9	1.1	1
BF Max Depth (ft)				1.9	2.3	2	1.5	1.8	1.7	1.5	1.6	1.6	1.4	1.8	1.6	1.2	1.6	1.4
Width/Depth Ratio				12	17	16	8	13	10	7.2	8	7.6	12	16	14	14	17	16
Entrenchment Ratio				1.6	9.6	7.9	2.7	14.6	4.9	2.3	2.7	2.5	8	10	9	15	16	16
Bank Height Ratio				1.8	3.1	1.9			1			1	1	1.3	1.1			1
Wetted Perimeter(ft)						===			===			===			===	15.9	16.8	16.7
Hydraulic radius (ft)						===			===			===			===	0.9	1.1	1
Pattern																		
Channel Beltwidth (ft)					attern o		30	40	35	35	58	45	50	101	67	50	101	67
Radius of Curvature (ft)					l pools o		12.5	25	18	10	32	16	34	168	50	34	168	50
Meander Wavelength (ft)				straigh	ntening	activties		70	45	65	128	81	101	202	143	101	202	143
Meander Width ratio							2.9	3.9	3.4	3.7	6.1	4.7	3	6	4	3	6	4
Profile																		
Riffle length (ft)					attern o				===			===			===	23	65	36
Riffle slope (ft/ft)					l pools o		0.30%	0.36%	0.34%	0.34%	4.31%	2.48%	1.10%	1.65%	1.38%	0.00%	1.50%	0.64%
Pool length (ft)				straigh	ntening	activties			===			===			===	10	54	32
Pool spacing (ft)							22	62	39	29	103	60	50	134	67	50	134	67
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			-
Channel Length (ft)						===			===			===			===			2108
Sinuosity						1.1			1.4			1.4			1.2			1.2
Water Surface Slope (ft/ft)						0.62%			0.28%			1.27%			0.55%			0.53%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification				_		Cd 5			E 4/5			E 4/5			Ec4/5			E/C 4/5

^{*}UT to Catawba River Reference Site includes measurements from a stream measured in 2008

Table 10B. Baseline Morphology and Hydraulic Summary **Herman Dairy UT 2**

Parameter	USG	USGS Gage Data		Pre-Existing Condition			ect Refe			ect Refe		Design			As-built^			
D'	M:	М М-	ı Mi	Min Max Med			Min May Med			Mar Mar Mad			М	Mal	M:	M	M.J	
Dimension DE Wilds (8)	Min	Max Me		15 Max	Med 9	Min 9	Max 12	Med 10	Min 9	Max 10	Med 10	Min 5.3	Max 6.1	Med 5.7	Min 6.8	Max 7.9	Med 6.9	
BF Width (ft)		S gage data i							-			3.3	0.1		0.0	7.9		
Floodprone Width (ft)		ilable for the	s 14	19	15	25	150	50	22	25	24			150	0.0	0.4	150	
BF Cross Sectional Area (ft2)		project	0.0	0.4	2.3	4.4	4.0	10.9	4.0	4.0	11.8	0.0	0.5	2.3	2.2	2.4	2.3	
BF Mean Depth (ft)			0.2	0.4	0.3	1.1	1.3	1.1	1.2	1.3	1.3	0.3	0.5	0.4	0.3	0.3	0.3	
BF Max Depth (ft)			0.4	0.8	0.5	1.5	1.8	1.7	1.5	1.6	1.6	0.4	0.6	0.5	0.5	0.5	0.5	
Width/Depth Ratio			16	76	30	8	13	10	7.2	8	7.6	12	16	14	20	27	21	
Entrenchment Ratic			1.3	2.2	1.6	2.7	14.6	4.9	2.3	2.7	2.5	14	38	26	19	22	22	
Bank Height Ratio			5	12	7			1			1	1	1.3	1.1		_	1	
Wetted Perimeter(ft)					===			===			===			===	7	8	7.1	
Hydraulic radius (ft)					===			===			===			===	0.3	0.3	0.3	
Pattern																		
Channel Beltwidth (ft)				pattern o		30	40	35	35	58	45	17	34	23	17	34	23	
Radius of Curvature (ft)				nd pools		12.5	25	18	10	32	16	11	57	17	11	57	17	
Meander Wavelength (ft)			strai	ghtening	activties	25	70	45	65	128	81	34	68	49	34	68	49	
Meander Width ratio						2.9	3.9	3.4	3.7	6.1	4.7	3	8	4	3	8	4	
Profile								•	1		•			•	1	,		
Riffle length (ft)				pattern o				===			===			===	6	44	14	
Riffle slope (ft/ft)				nd pools		0.30%	0.36%		0.34%	4.31%	2.48%	0.86%	1.29%	1.08%	0.00%	1.25%	0.39%	
Pool length (ft)			strai	ghtening	activties			===			===			===	6	32	13	
Pool spacing (ft)						22	62	39	29	103	60	17	46	23	17	46	23	
Substrate																		
d50 (mm)					===			===			===			===			===	
d84 (mm)					===			===			===			===			===	
Additional Reach Parameters				•		•		•						-		•		
Valley Length (ft)					===			===			===			===				
Channel Length (ft)					===			===			===			===			1696	
Sinuosity					1.04			1.4			1.4			1.2			1.2	
Water Surface Slope (ft/ft)					0.85%			0.28%			1.27%			0.43%			0.40%	
BF slope (ft/ft)					===			===			===			===			===	
Rosgen Classification					Fc 5/6			E 4/5			E 4/5			Ec4/5			C 4/5	

[^]Measured as-built numbers do not include D-type reach
*UT to Catawba River Reference Site includes measurements from a stream measured in 2008

Table 10C. Baseline Morphology and Hydraulic Summary Herman Dairy UT 3

Parameter	USGS Gage Data			Pre-Existing Condition			Project Reference Stream UT Catawba*			Project Reference Reach 1			Design			As-built		
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)	USGS	S gage da	ıta is	6	9	7	9	12	10	9	10	10	6	7	6.5	6.8	8.5	7.7
Floodprone Width (ft)	unava	ailable for	r this	12	13	12	25	150	50	22	25	24			150			150
BF Cross Sectional Area (ft2)		project				3			10.9			11.8			3	2.2	3.1	2.7
BF Mean Depth (ft)				0.3	0.5	0.4	1.1	1.3	1.1	1.2	1.3	1.3	0.4	0.6	0.5	0.3	0.4	0.4
BF Max Depth (ft)				0.6	0.9	0.7	1.5	1.8	1.7	1.5	1.6	1.6	0.6	0.8	0.7	0.5	0.5	0.5
Width/Depth Ratio				13	31	17	8	13	10	7.2	8	7.6	12	16	14	21	23	22
Entrenchment Ratio				1.4	1.9	1.7	2.7	14.6	4.9	2.3	2.7	2.5	22	25	23	17	22	19.5
Bank Height Ratio				4	7	6			1			1	1	1.3	1.1			1
Wetted Perimeter(ft)						===			===			===			===	7	8.7	7.9
Hydraulic radius (ft)						===			===			===			===	0.3	0.4	0.4
Pattern																		
Channel Beltwidth (ft)				No p	attern o	f riffles	30	40	35	35	58	45	20	39	26	20	39	26
Radius of Curvature (ft)					pools		12.5	25	18	10	32	16	13	65	20	13	65	20
Meander Wavelength (ft)				straigh	ntening	activties	25	70	45	65	128	81	39	78	55	39	78	55
Meander Width ratio							2.9	3.9	3.4	3.7	6.1	4.7	3	8	4	3	8	4
Profile																		
Riffle length (ft)					attern o				===			===			===	5	26	11
Riffle slope (ft/ft)					pools		0.30%	0.36%	0.34%	0.34%	4.31%	2.48%	0.22%	0.33%	0.28%	0.00%	1.59%	0.22%
Pool length (ft)				straigh	ntening	activties			===			===			===	7	21	13
Pool spacing (ft)							22	62	39	29	103	60	20	52	26	20	52	26
Substrate																		
d50 (mm)						===			===			===			===			===
d84 (mm)						===			===			===			===			===
Additional Reach Parameters																		
Valley Length (ft)						===			===			===			===			
Channel Length (ft)						===			===			===			===			743
Sinuosity						1.01			1.4			1.4			1.2			1.2
Water Surface Slope (ft/ft)						0.40%			0.28%			1.27%			0.11%			0.12%
BF slope (ft/ft)						===			===			===			===			===
Rosgen Classification					_	Fc 5/6			E 4/5			E 4/5		_	Ec4/5			C 4/5

^{*}UT to Catawba River Reference Site includes measurements from a stream measured in 2008

Table 11A. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

Parameter		Cross	Section	1 Pool (UT 1)			Cross	Section	2 Pool (UT 1)		Cı	ross Se	ection	3 Riffl	e (UT	1)	C	ross S	ection	4 Poo	l (UT	1)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	20.9	19.6	18.1	24.8			16.9	17.1	17.4	18.2			16.4	17	18.9	14			16.8	18.2	20.2	10.2		
Floodprone Width (ft)													250	250	250	250								
BF Cross Sectional Area (ft2)	19.9	18.9	17.4	17.4			16.3	16	14.9	14			16.7	17	17.5	10			14.4	14.5	13.8	10.5		
BF Mean Depth (ft)	1.0	1.0	1.0	0.7			1.0	0.9	0.9	0.8			1.0	1.0	0.9	0.7			0.9	0.8	0.7	1.0		
BF Max Depth (ft)	2.3	2.2	2.1	1.7			1.4	1.5	1.4	1.5			1.4	1.4	1.4	1.4			2.1	2.1	2.3	1.5		
Width/Depth Ratio													16.11	17	20.41	19.6								
Entrenchment Ratio													15.2	14.7	13.2	17.9								
Bank Height Ratio													1	1	1	1								
Wetted Perimeter (ft)	21.7	20.4	18.8	25.6			17.2	17.4	17.8	18.6			16.8	17.6	19.5	14.6			17.6	19.1	21.2	10.9		
Hydraulic Radius (ft)	0.9	0.9	0.9	0.6			0.9	0.9	0.8	0.8			1	1	0.9	0.7			0.8	0.8	0.6	1		
Substrate																								
d50 (mm)									0.4	0.4					0.2	0.2								
d84 (mm)									15	14					10	4								
Parameter	MY	-00 (201	12)	M	Y-01 (20)12)	MY	7-02 (20	13)	MY	7-03 (20	14)	MY	-04 (2	015)	MY-	-05 (20	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67	50	101	67												
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50	34	168	50												
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67	50	101	67												
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4												
Profile																								
Riffle Length (ft)	23	65	36	16	49	28	5	82	33	5	117	36												
Riffle Slope (ft/ft)	0.00%	1.50%	0.64%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%	0.11%	1.13%	0.37%												
Pool Length (ft)	10	54	32	18	62	35	12	63	31	7	49	30												
Pool Spacing (ft)	50	134	67	50	134	67	50	134	67	50	134	67												
Additonal Reach Parameters																			1					
Valley Length (ft)		1757			1373			1525			1513								1					
Channel Length (ft)		2,108			1,648			1830			1816								1					
Sinuosity		1.2			1.2			1.2			1.2								1					
Water Surface Slope (ft/ft)		0.0053			0.0045			0.0054			0.0051								1					
BF Slope (ft/ft)																			1					
Rosgen Classification		C/E 4/5			C-4/5			C 4/5			C 4/5								1					

Table 11B. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

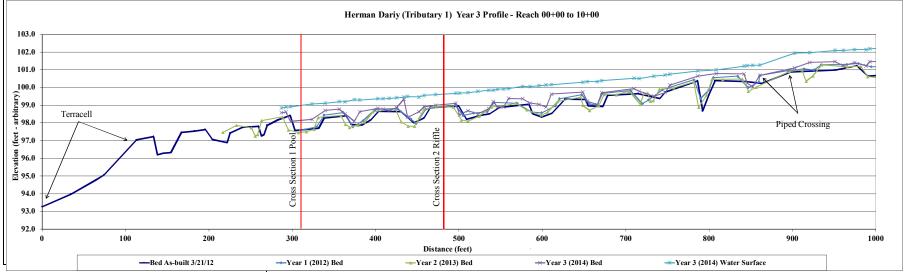
Parameter	(Cross Section 5 Riffle (UT 1)					Cross	Section	6 Pool (UT 1)		Cı	oss Se	ection	7 Riffl	e (UT	1)	C	ross S	ection	8 Pool	(UT	1)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	16.1	16.3	16.7	9.5			20	17.2	19.5	8.3			15.5	14.6	16.8	10.4			16.1	18.4	18.7	9.6		
Floodprone Width (ft)	250	250	250	250									250	250	250	250								
BF Cross Sectional Area (ft2)	18.2	16.6	15.2	7.5			20.3	17.7	15	7.8			14	14	14.5	9.3			15.5	16	16	11.7		
BF Mean Depth (ft)	1.1	1.0	0.9	0.8			1.0	1.0	0.8	0.9			0.9	1.0	0.9	0.9			1.0	0.9	0.9	1.2		
BF Max Depth (ft)	1.6	1.4	1.5	1.1			2.3	2.2	2.2	1.5			1.2	1.4	1.5	1.5			1.9	2.1	2.3	2.1		
Width/Depth Ratio	14.2	16.0	18.3	12.0									17.16	15.23	19.46	11.63								
Entrenchment Ratio	15.5	15.3	15.0	26.3									16.13	17.12	14.88	24.04								
Bank Height Ratio	1	1	1	1									1	1	1	1								
Wetted Perimeter (ft)	16.8	16.9	17.2	10			21	18.3	20.5	9.1			15.9	15.1	17.3	11.2			16.8	19.1	19.6	10.8		
Hydraulic Radius (ft)	1.1	1	0.9	0.8			1	1	0.7	0.9			0.9	0.9	0.8	0.8			0.9	0.8	0.8	1.1		
Substrate																								
d50 (mm)														-										
d84 (mm)																								
Parameter	MY	-00 (201	12)	MY	Y-01 (20	012)	MY	7-02 (20	13)	MY	7-03 (20	14)	MY	-04 (2	015)	MY-	-05 (20	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67	50	101	67												
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50	34	168	50												
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67	50	101	67												
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4												
Profile																								
Riffle Length (ft)	23	65	36	16	49	28	5	82	33	5	117	36												
Riffle Slope (ft/ft)	0.00%	1.50%	0.64%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%	0.11%	1.13%	0.37%												
Pool Length (ft)	10	54	32	18	62	35	12	63	31	7	49	30												
Pool Spacing (ft)	50	134	67	50	134	67	50	134	67	50	134	67												
Additonal Reach Parameters																								
Valley Length (ft)		1757			1373			1525			1513													
Channel Length (ft)		2,108			1,648			1830			1816													
Sinuosity		1.2			1.2			1.2			1.2													
Water Surface Slope (ft/ft)		0.0053 0.0045			0.0054			0.0051																
BF Slope (ft/ft)																								
Rosgen Classification		C/E 4/5			C-4/5			C 4/5			C 4/5													

Table 11C. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

Parameter		Cross S	Section 9	9 Pool (U T 1)			Cross S	Section 1	0 Riffle	(UT 1)		Cr	oss Se	ction	11 Rif	fle (UT	Γ2)	Cı	oss S	ection	12 Po	ol (UT	2)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	18.7	16.2	16.6	17.8			16	17	15.5	8.4			7.9	5.2	5.8	6.1			5.5	5.8	5.3	5.2		
Floodprone Width (ft)							250	250	250	250			150	150	150	150								
BF Cross Sectional Area (ft2)	15.7	15.4	16	12.8			16	15.6	13.2	8.5			2.3	1.3	1.4	1.3			2.3	2.1	2	2		
BF Mean Depth (ft)	0.8	1.0	1.0	0.7			1.0	0.9	0.9	1.0			0.3	0.3	0.2	0.2			0.4	0.4	0.4	0.4		
BF Max Depth (ft)	2	2.3	2.4	2			1.3	1.4	1.3	1.5			0.5	0.4	0.4	0.3			0.8	0.7	0.7	0.7		
Width/Depth Ratio							16.0	18.5	18.2	8.3			27.1	20.8	24.0	28.6								
Entrenchment Ratio							15.6	14.7	16.1	29.8			19.0	28.8	25.9	24.6								
Bank Height Ratio							1	1	1	1			1	1	1	1								
Wetted Perimeter (ft)	19.5	17	17.8	19			16.5	17.6	15.9	9.1			8	5.3	5.9	6.2			5.8	6	5.5	5.4		
Hydraulic Radius (ft)	0.8	0.9	0.9	0.7			1	0.9	0.8	0.9			0.3	0.2	0.2	0.2			0.4	0.3	0.4	0.4		
Substrate																								
d50 (mm)									9.8	8														
d84 (mm)									21	17														
Parameter	MY	-00 (201	2)	MY	7-01 (20	12)	MY	Y-02 (20	13)	MY	Y-03 (20	014)	MY	-04 (2	015)	MY	-05 (2	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																			Ī					
Channel Beltwidth (ft)	50	101	67	50	101	67	50	101	67	50	101	67							ĺ					
Radius of Curvature (ft)	34	168	50	34	168	50	34	168	50	34	168	50							ĺ					
Meander Wavelength (ft)	50	101	67	50	101	67	50	101	67	50	101	67							ĺ					
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4							ĺ					
Profile																			ĺ					
Riffle Length (ft)	17	111	51	16	49	28	5	82	33	5	117	36												
Riffle Slope (ft/ft)	0.43%	4.80%	1.54%	0.05%	1.05%	0.57%	0.14%	1.92%	0.65%	0.11%	1.13%	0.37%												
Pool Length (ft)	26	78	46	18	62	35	12	63	31	7	49	30												
Pool Spacing (ft)	76	176	126	50	134	67	50	134	67	50	134	67												
Additonal Reach Parameters																								
Valley Length (ft)		1757			1373			1525			1513													
Channel Length (ft)		2,108			1,648			1830			1816								Ī					
Sinuosity		1.2			1.2			1.2			1.2								Ī					
Water Surface Slope (ft/ft)		0.0053			0.0045			0.0054			0.0051								Ī					
BF Slope (ft/ft)	. ,														Ī									
Rosgen Classification				C-4/5			C 4/5			C 4/5								Ī						

Table 11D. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

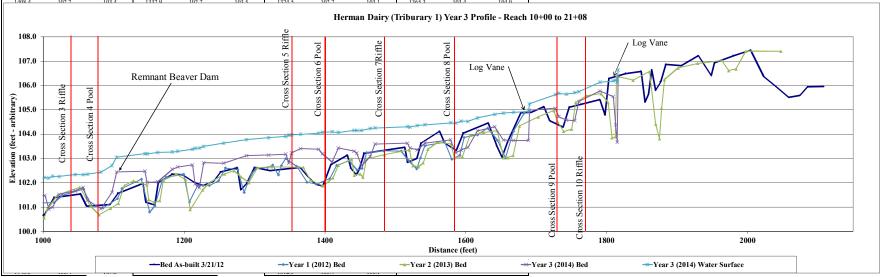
Parameter	(Cross Section 13 Riffle (UT 2)					Cross	Section	14 Pool	(UT 2)		Cr	oss Se	ction	15 Rif	fle (UT	Γ2)	Cı	ross S	ection	16 Po	ol (UT	2)	
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	6.9	7	6.3	6.5			6.6	6.8	6	5.8			6.8	6.9	6.9	7.1			5.7	7.1	5.6	3.6		
Floodprone Width (ft)	150	150	150	150									150	150	150	150								
BF Cross Sectional Area (ft2)	2.4	1.5	1.7	1.7			2.4	2.6	2.5	2.4			2.2	2.2	2.2	1.2			2.3	2.4	2.1	1.4		
BF Mean Depth (ft)	0.3	0.2	0.3	0.3			0.4	0.4	0.4	0.4			0.3	0.3	0.3	0.2			0.4	0.3	0.4	0.4		
BF Max Depth (ft)	0.5	0.5	0.5	0.6			0.7	0.7	0.8	0.8			0.5	0.5	0.5	0.3			0.8	0.8	0.9	0.8		
Width/Depth Ratio	19.8	32.7	23.3	24.9									21.0	21.6	21.6	42.0								
Entrenchment Ratio	21.7	21.4	23.8	23.1									22.1	21.7	21.7	21.1								
Bank Height Ratio	1	1	1	1									1	1	1	1								
Wetted Perimeter (ft)	7.1	7.2	6.5	6.7			6.8	7	6.3	6.1			7	7.1	7.1	7.2			6	7.3	6	4.1		
Hydraulic Radius (ft)	0.3	0.2	0.3	0.3			0.3	0.4	0.4	0.4			0.3	0.3	0.3	0.2			0.4	0.3	0.3	0.3		
Substrate																								
d50 (mm)			24.6	26.5											24.2	23.9								
d84 (mm)			40	48											45	49								
Parameter	MY	'-00 (201	12)	MY	7-01 (20	012)	MY	7-02 (20	13)	M	Y-03 (20	14)	MY	-04 (2	015)	MY	-05 (2	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	17	34	23	17	34	23	17	34	23	17	34	23												
Radius of Curvature (ft)	11	57	17	11	57	17	11	57	17	11	57	17												
Meander Wavelength (ft)	34	68	49	34	68	49	34	68	49	34	68	49												
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4												
Profile																								
Riffle Length (ft)	6	44	14	6	41	11	6	28	12	6	34	12												
Riffle Slope (ft/ft)	0.00%	1.25%	0.39%	0	3.39	0.42	0.00%	3.33%	0.42%	0.00%	2.76%	0.39%												
Pool Length (ft)	6	32	13	7	21	11	6	21	11	4	20	10												
Pool Spacing (ft)	17	46	23	17	46	23	17	46	23	50	134	67												
Additonal Reach Parameters																								
Valley Length (ft)		1413			1522			1298			1316													
Channel Length (ft)		1,696			1,827			1557			1579													
Sinuosity		1.2			1.2			1.2			1.2													
Water Surface Slope (ft/ft)		0.004			0.0041			0.0042			0.0043													
BF Slope (ft/ft)		0.004																						
Rosgen Classification		C/E 4/5 C 4/5			C 4/5			C 4/5																


Table 11E. Morphology and Hydraulic Monitoring Summary Herman Dairy - Stream and Wetland Restoration Site

Parameter	C	cross Se	ction 17	Riffle	(UT 3)			Cross S	ection	18 Pool	(UT 3)		Cr	oss Se	ection	19 Po	ol (UT	(3)	Cr	oss Se	ction 2	20 Rif	fle (U	Г3)
Dimension	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5	MY 0	MY1	MY2	MY3	MY4	MY5
BF Width (ft)	8.5	7.7	7.7	8.5			6.2	6.2	6.5	6.5			6.8	6.5	6.4	6.2			9.5	7.8	7.5	7.2		
Floodprone Width (ft)	150	150	150	150															150	150	150	150		
BF Cross Sectional Area (ft2)	3.1	2.6	2.7	2.9			3.8	3.7	3.6	3.6			3	3	2.9	2.7			3.2	2.3	2.6	2.4		
BF Mean Depth (ft)	0.4	0.3	0.4	0.3			0.6	0.6	0.6	0.6			0.4	0.5	0.5	0.4			0.3	0.3	0.3	0.3		
BF Max Depth (ft)	0.5	0.5	0.5	0.5			1	1.1	1	1			0.9	1	0.9	0.9			0.6	0.4	0.5	0.5		
Width/Depth Ratio	23.3	22.8	22.0	24.9															28.2	26.5	21.6	21.6		
Entrenchment Ratio	17.6	19.5	19.5	17.6															15.8	19.2	20.0	20.8		
Bank Height Ratio	1	1	1	1															1	1	1	1		
Wetted Perimeter (ft)	8.7	7.8	7.8	8.7			6.7	6.6	6.9	7			7.2	6.9	6.7	6.5			9.7	7.9	7.7	7.3		
Hydraulic Radius (ft)	0.4	0.3	0.3	0.3			0.6	0.6	0.5	0.5			0.4	0.4	0.4	0.4			0.3	0.3	0.3	0.3		
Substrate																								
d50 (mm)			28.2	27.7																				
d84 (mm)			43	45																				
Parameter	MY	-00 (20 1	12)	MY	-01 (20)12)	MY	7-02 (20	13)	MY	7-03 (20	14)	MY	-04 (2	015)	MY	-05 (20	016)						
	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med						
Pattern																								
Channel Beltwidth (ft)	20	39	26	20	39	26	20	39	26	20	39	26												
Radius of Curvature (ft)	13	65	20	13	65	20	13	65	20	13	65	20												
Meander Wavelength (ft)	39	78	55	39	78	55	39	78	55	39	78	55												
Meander Width Ratio	3	6	4	3	6	4	3	6	4	3	6	4												
Profile																								
Riffle Length (ft)	5	26	11	5	27	9	4	27	10		27	11												
Riffle Slope (ft/ft)	0.00%	1.59%	0.22%				0.00%	1.43%	0.28%	0.00%	1.66%	0.26%												
Pool Length (ft)	8	21	13	7	24	13	7	21	13	6	21	14												
Pool Spacing (ft)	20	52	26	20	52	26	20	52	26	20	52	26												
Additonal Reach Parameters																								
Valley Length (ft)		619			645			616			609													
Channel Length (ft)		743			774			739			731													
Sinuosity		1.2			1.2			1.2			1.2													
Water Surface Slope (ft/ft)		0.0012						0.0015			0.0015													
BF Slope (ft/ft)																								
Rosgen Classification		C/E 4/5			C 4/5			C 4/5			C 4/5													

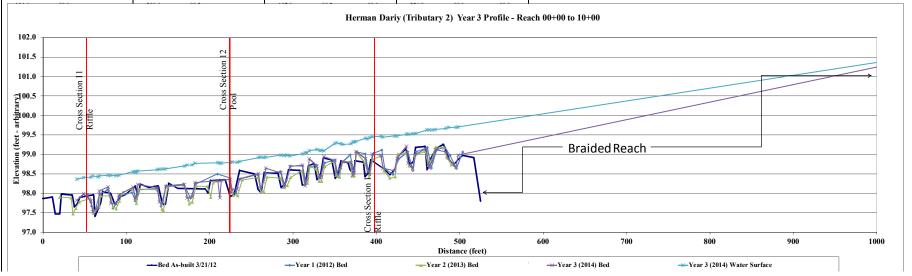
Project Name Herman Dairy - Year 3 (2014) Profile
Reach Tributary 1
Feature Profile
Date 3/13/14
Crew Perkinson, Jernigan

	2012			2012	_		2013	_		2014	
	As-built Surve			ear 1 Monitoring \			ear 2 Monitoring \			ear 3 Monitoring \	
Station		Water Elevation	Station		Water Elevation	Station		Water Elevation	Station		Water Elevation
0.0	93.3	93.9	309.6	97.6	98.9	216.9	97.5	98.2	287.0	98.6	98.8
34.6	94.0	94.3	328.9	97.8	98.9	233.1	97.9	98.2	292.2	98.6	98.9
64.3	94.8	95.2	338.1	98.4	99.0	251.0	97.7	98.3	298.1	98.1	98.9
74.2	95.1	95.4	361.2	98.6	99.1	255.4	97.3	98.2	323.8	98.2	99.1
113.3	97.0	97.5	372.6	97.8	99.2	258.6	97.3	98.3	339.8	98.7	99.1
133.7	97.2	97.9	384.9	98.1	99.2	263.3	98.1	98.4	356.5	98.8	99.2
138.4	96.2	98.0	399.8	98.8	99.2	288.3	98.3	98.7	363.3	98.5	99.2
145.3	96.3	97.9	425.9	98.8	99.2	295.3	97.6	98.7	374.5	98.1	99.3
154.5	96.3	98.0	442.1	98.2	99.2	307.2	97.5	98.7	381.1	98.6	99.3
167.2	97.5	98.0	448.7	98.0	99.3	316.9	97.5	98.7	402.4	98.8	99.4
182.9	97.5	98.1	460.2	98.8	99.3	326.0	97.6	98.7	408.9	98.8	99.4
195.8	97.6	98.1	495.5	99.0	99.5	331.1	98.3	98.8	416.2	98.7	99.4
204.1	97.1	98.1	505.1	98.4	99.5	358.4	98.4	99.0	425.2	98.9	99.4
221.9	96.9	98.1	517.5	98.5	99.5	363.8	97.9	99.1	433.9	99.3	99.5
225.5	97.4	98.1	534.0	98.6	99.4	368.9	97.7	99.1	438.3	98.3	99.5
240.5	97.8	98.2	542.1	99.2	99.5	378.8	97.9	99.1	452.1	98.6	99.5
259.8	97.8	98.3	569.5	99.1	99.6	386.9	98.0		458.1	98.9	99.6
263.0	97.3	98.3	587.1	98.6	99.6	396.6	98.6	99.1	471.9	99.0	99.6
266.2	97.3	98.3	599.2	98.6	99.6	423.5	98.8	99.1	496.2	99.1	99.7
269.8	97.9	98.4	615.4	99.0	99.6	430.5	98.1	99.2	500.7	98.5	99.7
282.4	98.2	98.5	620.7	99.4	99.7	438.9	97.8	99.2	510.7	98.7	99.7
297.4	98.4	98.7	647.1	99.6	99.9	446.6	97.8	99.2	522.8	98.5	99.8
303.3	97.6	98.7	656.5	99.1	100.0	452.6	98.3	99.1	535.7	98.8	99.8
331.6	97.7	98.7	665.6	99.0	100.0	458.2	98.8	99.3	541.2	99.2	99.8
338.2	98.3	98.8	672.0	99.7	100.0	472.7	98.9	99.3	546.1	98.9	99.9
364.5	98.4	98.9	705.7	99.8	100.2	493.2	98.9	99.5	553.4	98.9	99.9
370.8	97.9	99.0	719.8	99.1	100.2	502.7	98.2	99.5	559.6	99.4	99.9
383.9	97.9	99.0	727 3	99 3	100.3	510.9	98.1	99.5	576.3	99 4	100.1


	As-built	2012	2013	2014
Avg. Water Surface Slope	0.0053	0.0045	0.0054	0.0051
Riffle Length	36	28	36	38
Avg. Riffle Slope	0.0064	0.0057	0.0075	0.0049
Pool Length	32	35	32	30

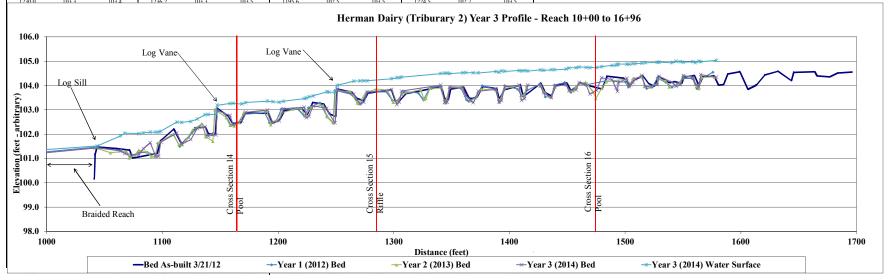
Project Name Herman Dairy - Year 3 (2014) Profile
Reach Tributary 1
Feature Profile
Date 3/13/14
Crew Perkinson, Jernigan

	2012 As-built Surv	ey	Y	2012 ear 1 Monitoring \	Survey	Y	2013 ear 2 Monitoring \	Survey	Ye	2014 ear 3 Monitoring \	Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
990.2	100.6	101.7	994.2	101.2	102.0	990.0	100.6	101.8	992.7	101.5	102.2
1001.8	100.7	101.7	1015.4	101.2	102.1	1001.2	100.6	101.8	1002.4	101.5	102.2
1015.7	101.4	101.7	1027.3	101.5	102.1	1005.6	100.9	101.8	1008.0	100.9	102.2
1053.0	101.5	101.9	1056.7	101.7	102.3	1020.3	101.5	101.9	1013.1	101.0	102.3
1061.5	101.0	101.9	1069.3	101.0	102.3	1052.0	101.8	102.3	1022.9	101.5	102.3
1094.8	101.1	102.0	1085.1	101.0	102.3	1066.9	101.0	102.3	1045.3	101.7	102.3
1106.1	101.6	102.2	1105.4	101.3	102.4	1079.1	100.7	102.3	1056.9	101.8	102.3
1141.7	102.0	102.4	1111.8	101.8	102.4	1095.5	100.9	102.3	1062.7	101.3	102.4
1145.7	101.2	102.3	1139.4	102.2	102.7	1106.7	101.1	102.3	1081.8	100.9	102.4
1158.5	101.1	102.3	1151.1	100.8	102.7	1115.3	101.9	102.3	1097.5	101.6	102.7
1163.3	102.0	102.4	1158.5	101.0	102.7	1128.3	102.1	102.5	1104.2	102.4	103.0
1183.3	102.4	102.7	1168.8	102.1	102.7	1147.1	101.9	102.6	1144.4	102.5	103.2
1197.8	102.3	102.8	1174.7	102.2	102.7	1149.9	101.3	102.6	1147.7	102.0	103.2
1214.6	102.0	102.8	1199.3	102.4	102.9	1157.0	101.2	102.6	1162.6	102.0	103.2
1226.9	101.9	102.8	1207.4	101.2	103.0	1165.6	101.3	102.6	1183.3	102.6	103.3
1242.5	102.1	102.8	1219.3	101.9	103.0	1170.8	102.1	102.6	1190.6	102.6	103.3
1251.9	102.4	102.8	1235.6	101.9	103.0	1188.6	102.4	102.8	1211.9	102.7	103.4
1275.5	102.6	102.8	1248.9	102.1	103.1	1202.2	102.1	102.8	1215.7	101.9	103.4
1280.7	101.7	102.9	1258.6	102.6	103.2	1208.7	100.9	102.9	1221.5	101.8	103.4
1289.3	102.0	102.9	1276.2	102.5	103.3	1226.2	101.7	102.9	1227.7	102.8	103.5
1300.0	102.6	102.8	1285.3	101.6	103.3	1234.8	102.0	102.9	1256.2	102.8	103.6
1321.8	102.5	102.9	1295.7	102.4	103.3	1257.0	102.4	102.9	1288.7	103.1	103.8
1364.7	102.6		1302.3	102.6	103.4	1270.7	102.5	103.0	1319.8	103.1	103.9
1376.2	102.2	103.0	1318.4	102.6	103.5	1280.9	102.2	103.0	1344.6	103.2	103.9
1386.5	102.0	103.1	1326.0	102.7	103.5	1292.0	102.0	103.0	1348.5	102.8	104.0
1397.1	101.9	103.1	1333.8	102.3	103.5	1304.3	102.6	103.0	1352.5	103.2	104.0
1408.4	102.7	103.4	1337 0	102.7	103.5	1324.5	102.7	103.1	1365.3	103.4	104.0


	As-built	2012	2013	2014
Avg. Water Surface Slope	0.0053	0.0045	0.0054	0.0051
Riffle Length	36	28	36	38
Avg. Riffle Slope	0.0064	0.0057	0.0075	0.0049
Pool Length	32	35	32	30

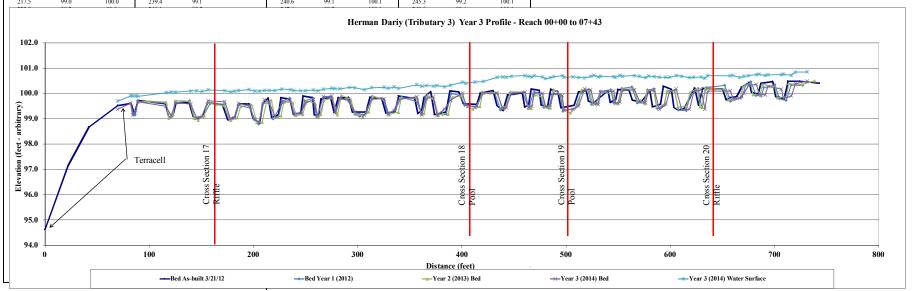
Project Name Herman Dairy - Year 3 (2014) Profile Reach Tributary 2
Feature Profile Date 3/13/14
Crew Perkinson, Jernigan

CICH	I CIKIIISON, JCINIS	an									
	2012			2012			2013			2014	
	As-built Surve	ey	Y	ear 1 Monitoring	Survey	Y	ear 2 Monitoring	Survey	Y	ear 3 Monitoring	Survey
Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation	Station	Bed Elevation	Water Elevation
0.0	97.9	98.2	53.5	98.0	98.4	20.0	97.9	98.5	40.8	97.8	98.4
11.2	97.9	98.2	58.4	97.7	98.4	33.8	97.9	98.5	48.9	98.0	98.4
14.9	97.5	98.2	62.3	97.5	98.3	36.0	97.5	98.6	57.4	97.8	98.4
20.1	97.5	98.2	67.7	98.0	98.3	39.4	97.6	98.6	59.6	97.5	98.4
22.2	98.0	98.0	77.5	98.1	98.4	43.6	97.8		66.0	97.6	98.4
34.9	98.0		84.1	97.6	98.4	57.3	97.9	98.6	67.6	98.1	98.4
37.6	97.6	98.1	87.5	97.7	98.4	60.4	97.5	98.6	78.2	98.2	98.5
41.7	97.7	98.1	92.2	97.9	98.4	67.4	97.7	98.6	81.4	97.7	98.5
44.1	97.9		106.8	98.0	98.4	69.4	97.9	98.6	87.5	97.7	98.5
60.6	98.0		110.6	97.8	98.3	80.5	97.9	98.6	90.9	98.0	98.5
62.3	97.4	98.1	114.0	98.1	98.2	84.1	97.7	98.7	108.0	98.2	98.6
69.1	97.8	98.1	137.1	98.1	98.4	87.7	97.6	98.7	110.9	97.9	98.5
71.7	98.0		141.4	97.7	98.4	91.8	97.8	98.6	111.5	97.9	98.5
81.1	98.0		147.7	98.2	98.3	95.9	98.0	98.7	113.6	98.2	98.6
85.9	97.7	98.3	168.6	98.2	98.5	107.8	98.1	98.7	137.1	98.1	98.6
93.8	97.9	98.3	176.9	97.9	98.5	112.1	97.7	98.7	139.6	97.8	98.6
99.3	98.0	98.3	182.9	98.2	98.4	115.2	98.1	98.7	143.6	97.7	98.6
110.8	98.2		209.1	98.5	98.5	136.8	98.1	98.8	146.9	98.2	98.6
113.8	97.9	98.4	223.9	98.4	98.6	142.5	97.6	98.8	169.5	98.2	98.7
116.9	98.2		226.4	98.0	98.6	144.2	97.6	98.8	172.8	97.9	98.7
126.7	98.1	98.4	231.4	98.0	98.6	149.8	98.2	98.8	179.2	97.9	98.7
138.4	98.2		235.9	98.4	98.7	169.3	98.2	98.8	182.2	98.3	98.8
143.4	97.7	98.4	257.1	98.5	98.8	174.4	97.8	98.8	209.6	98.3	98.8
146.8	97.7	98.5	261.1	98.1	98.8	175.4	97.7	98.8	212.1	97.9	98.8
150.8	98.3		267.6	98.5	98.8	179.1	97.8	98.8	213.9	98.3	98.8
161.2	98.1		284.8	98.6	98.8	183.6	98.2	98.8	224.7	98.4	98.8


	As-built	2012	2013	2014
Avg. Water Surface Slope	0.0040	0.0041	0.0042	0.0043
Riffle Length	14	13	13	14
Avg. Riffle Slope	0.0039	0.0042	0.0061	0.0057
Pool Length	13	12	11	11

Project Name Herman Dairy - Year 3 (2014) Profile Reach Tributary 2
Feature Profile Date 3/13/14
Crew Perkinson, Jernigan

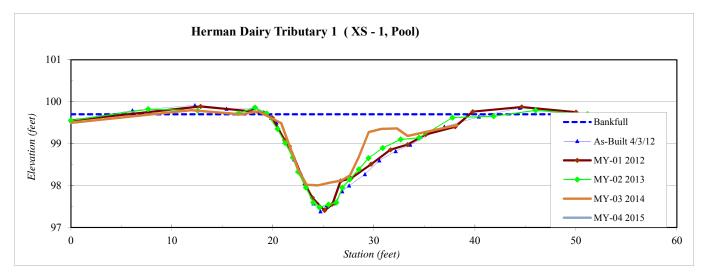
CICH	r crkinson, sering	an									
	2012			2012			2013			2014	
	As-built Surve		Y	ear 1 Monitoring \	Survey	Y	ear 2 Monitoring \	Survey	Y	ear 3 Monitoring \	Survey
Station		Water Elevation									
524.8		99.4	503.3	99.1	99.6	495.4	98.7		498.0	99.0	99.7
1041.2	100.2	100.8	1041.2	101.5	101.5	1041.2	101.4		1043.6	101.4	101.5
1041.8	101.2	101.2	1064.1	101.3	101.6	1055.1	101.2	101.8	1063.5	101.3	101.9
1043.5	101.5	101.5	1072.4	101.1	101.7	1068.9	101.3	102.0	1067.5	101.2	102.0
1060.7	101.4	101.7	1078.9	101.2	101.7	1071.4	101.0	102.0	1079.6	101.1	102.0
1071.8	101.3	101.7	1087.0	101.3	101.7	1076.4	101.1	102.0	1083.8	101.4	102.0
1074.4	101.0	101.6	1094.2	101.1	101.7	1079.6	101.3	102.0	1089.6	101.6	102.1
1095.6	101.2	101.7	1096.1	101.6	101.9	1086.6	101.3	102.0	1094.1	101.1	102.1
1098.7	101.7		1109.7	102.0	102.4	1090.3	101.1	102.0	1096.7	101.1	102.1
1110.0	102.2		1115.0	101.5	102.4	1093.7	101.1	102.0	1098.7	101.7	102.1
1116.6	101.6	102.3	1120.4	101.8	102.4	1096.8	101.7	102.2	1112.5	102.0	102.5
1122.1	101.8	102.3	1125.5	102.1	102.4	1109.1	102.0	102.6	1116.7	101.6	102.5
1128.3	102.3		1134.2	102.4	102.8	1114.1	101.6	102.6	1124.5	101.8	102.5
1137.3	102.3		1137.5	101.9		1117.1	101.6	102.6	1130.2	102.2	102.6
1139.8	102.0	102.6	1144.2	102.0	102.8	1120.4	101.7	102.6	1136.9	102.3	102.8
1146.0	102.0	102.6	1145.5	103.0		1126.1	102.2	102.7	1139.6	101.9	102.8
1147.4	103.1		1153.5	102.9	103.1	1134.2	102.4	103.0	1146.4	102.0	102.8
1156.8	102.8	103.1	1159.3	102.4	103.1	1137.5	101.9	103.0	1147.4	103.0	103.2
1160.6	102.4	103.1	1165.4	102.5	103.1	1143.7	101.7	103.0	1158.3	102.8	103.3
1167.7	102.5	103.1	1170.1	102.8	103.1	1145.3	103.0	103.3	1161.3	102.4	103.3
1172.0	102.9	103.1	1188.5	102.9	103.2	1155.2	102.7	103.4	1168.8	102.6	103.2
1191.8	102.9	103.2	1192.5	102.5	103.2	1158.5	102.4	103.4	1172.1	102.9	103.3
1195.0	102.4	103.2	1198.5	102.6	103.3	1162.1	102.3	103.4	1190.9	103.0	103.4
1201.3	102.6	103.2	1202.8	103.0	103.3	1166.4	102.5	103.4	1195.5	102.5	103.3
1205.2	103.0	103.2	1217.5	103.0	103.4	1170.4	102.9	103.4	1201.1	102.6	103.3
1220.4	103.1	103.3	1222.8	102.7	103.4	1190.0	103.0	103.5	1204.7	103.0	103.4
1225.1	102.8	103.3	1226.2	103.1	103.5	1193.6	102.4	103.5	1222.7	103.1	103.5
1220.0	102.2	102.4	1226.2	102.2	102.5	1105 6	102.5	102.5	1224.5	102.7	102.5


	As-built	2012	2013	2014
Avg. Water Surface Slope	0.0040	0.0041	0.0042	0.0043
Riffle Length	14	13	13	14
Avg. Riffle Slope	0.0039	0.0042	0.0061	0.0057
Pool Length	13	12	11	11

Project Name Herman Dairy - Year 3 (2014) Profile
Reach Tributary 3
Feature Profile
Date 3/13/14
Crew Perkinson, Jernigan

0.0 22.2	As-built Surve Bed Elevation	·)		4 3 4 1 1 1	c.	**	2013		**	2014	0
0.0	Bed Elevation			ear 1 Monitoring \			ear 2 Monitoring \			ear 3 Monitoring	
		Water Elevation	Station		Water Elevation	Station		Water Elevation	Station		Water Elevation
22.2	94.6		82.0	99.6		89.0	99.7	99.9	69.8	99.4	99.7
	97.1		85.1	99.1		100.1	99.7	99.9	82.0	99.6	99.9
42.1	98.7		86.6	99.2		116.2	99.7	100.0	84.0	99.1	99.9
69.9	99.5		89.0	99.7		118.7	99.0	100.0	87.2	99.3	99.9
82.7	99.6		116.0	99.6		122.8	99.2	100.0	89.0	99.7	99.9
85.8	99.2	99.9	118.9	99.0		124.9	99.7	99.9	116.3	99.5	100.0
89.2	99.7	99.9	122.4	99.1		138.9	99.7	100.0	121.0	99.1	100.1
115.5	99.6	99.9	125.1	99.6		142.8	99.0	100.0	125.1	99.6	100.0
119.0	99.0	99.9	138.8	99.7		146.9	98.9	100.0	139.9	99.6	100.1
122.7	99.1	99.9	143.8	99.0		153.0	99.1	100.0	145.4	99.0	100.1
125.8	99.6	99.9	151.9	99.1		155.7	99.6	100.0	150.6	99.1	100.1
138.2	99.6	99.9	158.4	99.6		163.8	99.6	100.0	156.5	99.7	100.1
142.3	99.1	99.9	171.8	99.6		171.9	99.5	100.0	172.5	99.7	100.1
146.4	99.0	99.9	176.8	99.0		178.1	98.9	100.0	177.9	99.0	100.1
151.0	99.1	99.9	182.1	99.1		184.5	99.0	100.0	181.6	99.0	100.1
156.1	99.6	99.9	185.4	99.5		187.8	99.5	100.0	185.6	99.6	100.1
170.2	99.6	99.9	197.4	99.4		198.4	99.6	100.0	195.7	99.5	100.2
175.3	99.0	99.9	199.7	99.0		203.3	98.9	100.0	201.2	99.0	100.1
182.1	99.1	99.9	204.8	98.8		208.4	98.9	100.0	205.5	98.9	100.1
185.9	99.6	99.9	209.1	99.6		212.7	99.7	100.0	210.5	99.7	100.1
196.0	99.6	99.9	215.3	99.6		217.1	99.7	100.0	215.1	99.7	100.1
199.5	99.0	99.9	218.7	99.0		220.5	99.1	100.0	220.4	99.1	100.1
205.7	98.8	99.9	223.9	99.1		226.5	99.1	100.0	227.2	99.6	100.2
208.9	99.6		227.8	99.7		229.2	99.7	100.0	235.4	99.7	100.1
214.2	99.8	100.0	234.9	99.8		237.8	99.6	100.1	238.8	99.2	100.1
217.5	99.0	100.0	239.4	99.1		240.6	99.1	100.1	245.3	99.2	100.1

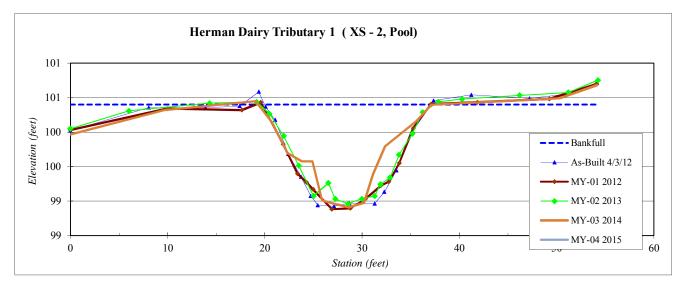
_				
	As-built	2012	2013	2014
Avg. Water Surface Slope	0.0012	NA	0.0015	0.0015
Riffle Length	11	10	11	11
Avg. Riffle Slope	0.0022	NA	0.0042	0.0040
Pool Length	13	13	13	13


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 1, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	99.50
11.90	99.80
16.81	99.70
18.55	99.77
20.83	99.49
22.49	98.40
23.34	98.02
24.46	98.01
25.63	98.07
26.75	98.12
27.63	98.24
28.49	98.67
29.49	99.28
30.72	99.35
32.28	99.36
33.33	99.18
38.3	99.44
45.09	99.76
50.25	99.70

SUMMARY DATA	
Bankfull Elevation:	99.7
Bankfull Cross-Sectional Area:	15.6
Bankfull Width:	24.8
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.7
Mean Depth at Bankfull:	0.6
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

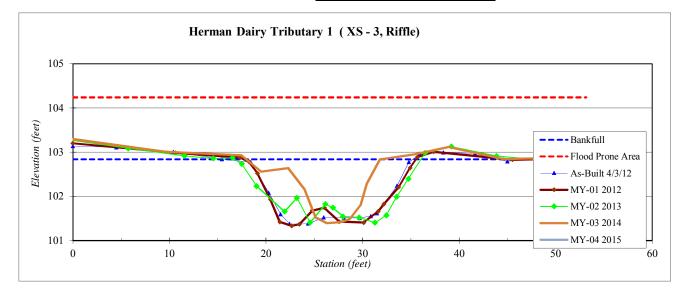
Stream Type	Е
-------------	---



Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 2, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	99.97
9.61	100.32
19.04	100.45
20.72	100.15
22.33	99.70
23.81	99.57
24.87	99.58
25.88	99.01
26.69	98.98
28.61	98.91
30.19	98.97
31.11	99.39
32.35	99.79
35.54	100.16
37.13	100.40
43.8	100.45
50.3	100.49
54.2	100.68

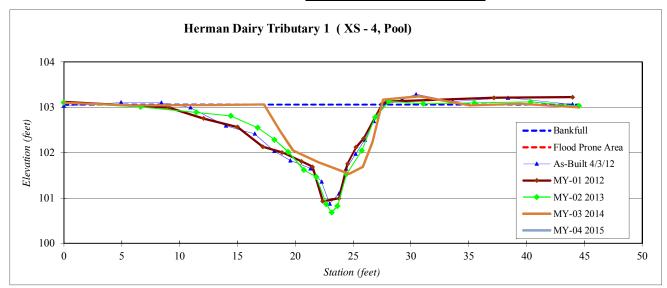
SUMMARY DATA	
Bankfull Elevation:	100.4
Bankfull Cross-Sectional Area:	14.0
Bankfull Width:	18.2
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.8
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-



Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 3, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.00	103.30
9.62	103.01
17.42	102.93
19.49	102.56
22.31	102.64
23.98	102.17
25.12	101.52
26.29	101.39
27.68	101.42
28.68	101.49
29.80	101.81
30.43	102.29
31.80	102.83
35.36	102.95
38.9	103.12
44.6	102.84
53.2	102.89

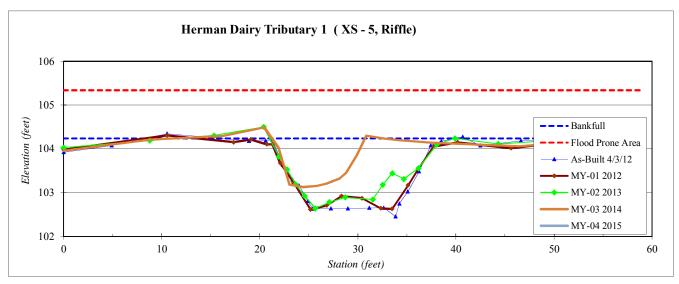
SUMMARY DATA	
Bankfull Elevation:	102.8
Bankfull Cross-Sectional Area:	10.0
Bankfull Width:	14.0
Flood Prone Area Elevation:	104.2
Flood Prone Width:	>80
Max Depth at Bankfull:	1.4
Mean Depth at Bankfull:	0.7
W / D Ratio:	19.6
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0



Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 4, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	103.1
6.0	103.0
12.8	103.0
17.3	103.1
18.7	102.5
19.8	102.1
22.0	101.8
23.6	101.6
24.7	101.5
25.8	101.7
26.7	102.2
27.6	103.2
30.7	103.2
35.1	103.0
39.4	103.08
44.4	103.00
	ļI

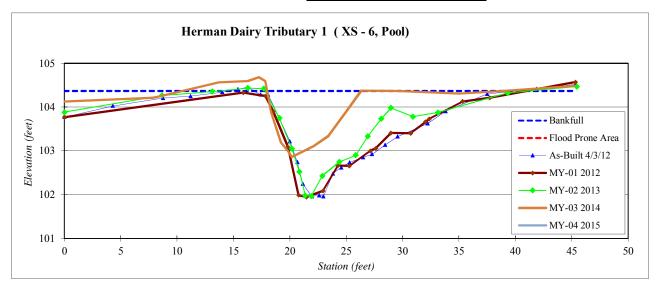
SUMMARY DATA	
Bankfull Elevation:	103.1
Bankfull Cross-Sectional Area:	10.5
Bankfull Width:	10.2
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	1.0
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-



Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 5, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	104.0
8.8	104.2
16.2	104.3
20.5	104.5
21.9	104.0
23.0	103.2
24.4	103.1
25.8	103.2
26.8	103.2
28.1	103.3
28.8	103.5
29.9	103.9
30.9	104.3
32.7	104.24
34.2	104.20
37.6	104.14
46.4	104.06
52.8	104.17
58.8	104.32

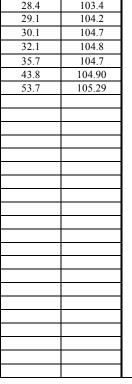
SUMMARY DATA	
Bankfull Elevation:	104.2
Bankfull Cross-Sectional Area:	7.5
Bankfull Width:	9.5
Flood Prone Area Elevation:	105.3
Flood Prone Width:	>80
Max Depth at Bankfull:	1.1
Mean Depth at Bankfull:	0.8
W / D Ratio:	12.0
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

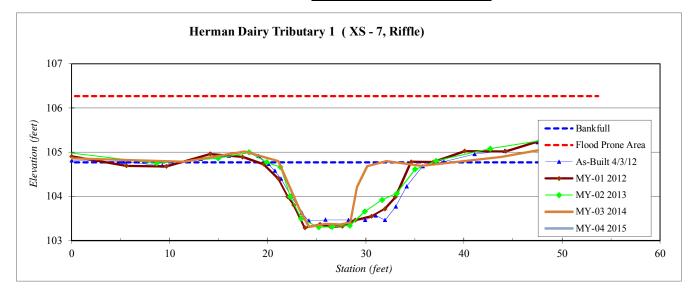

Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 6, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	104.1
8.0	104.2
13.7	104.6
16.3	104.6
17.2	104.7
17.8	104.6
18.3	103.9
19.2	103.2
19.8	103.0
20.2	102.9
22.1	103.1
23.4	103.3
25.0	103.9
26.3	104.4
29.7	104.4
35.0	104.3
38.9	104.4
45.2	104.5

SUMMARY DATA	
Bankfull Elevation:	104.4
Bankfull Cross-Sectional Area:	7.8
Bankfull Width:	8.3
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.9
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

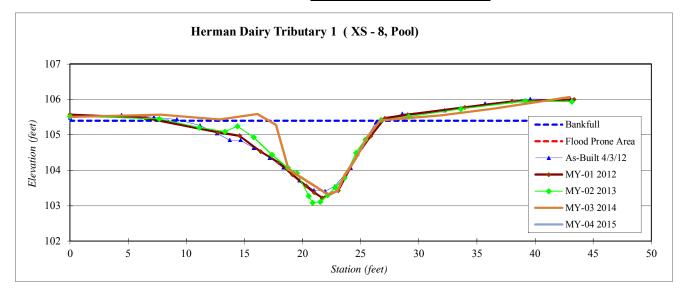
Stream Type	E/C
-------------	-----




Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 7, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
-0.5	104.9
11.5	104.8
17.6	105.0
21.1	104.8
23.2	103.7
24.2	103.3
25.9	103.4
27.4	103.4
28.4	103.4
29.1	104.2
30.1	104.7
32.1	104.8
35.7	104.7
43.8	104.90
53.7	105.29

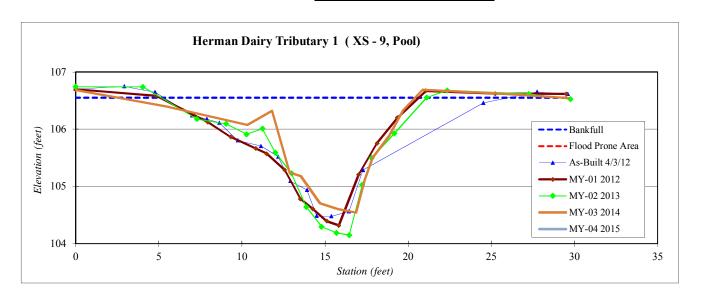
SUMMARY DATA	
Bankfull Elevation:	104.8
Bankfull Cross-Sectional Area:	9.3
Bankfull Width:	10.4
Flood Prone Area Elevation:	106.3
Flood Prone Width:	>80
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	0.9
W / D Ratio:	11.6
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 8, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Elevation
105.5
105.6
105.4
105.6
105.3
104.0
103.6
103.3
103.4
103.8
104.3
105.0
105.4
105.55
105.74
106.07

SUMMARY DATA	
Bankfull Elevation:	105.4
Bankfull Cross-Sectional Area:	11.7
Bankfull Width:	9.6
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.1
Mean Depth at Bankfull:	1.2
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

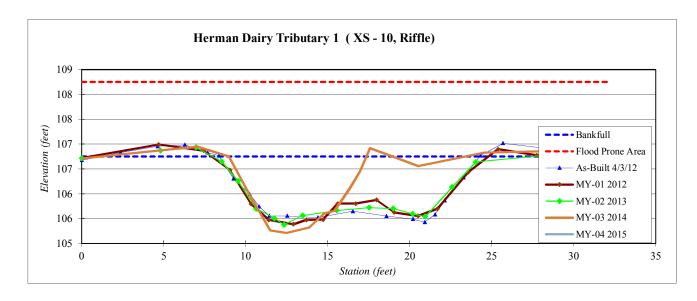
Stream Type	E/C
-------------	-----



Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 9, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0 5.4	106.7
10.3	106.4
	106.1
11.8	106.3
12.9	105.2
13.5	105.2
14.7	104.7
15.8	104.6
16.9	104.5
17.4	105.1
17.9	105.5
18.8	105.9
19.7	106.3
20.9	106.69
25.1	106.63
29.6	106.55
	1

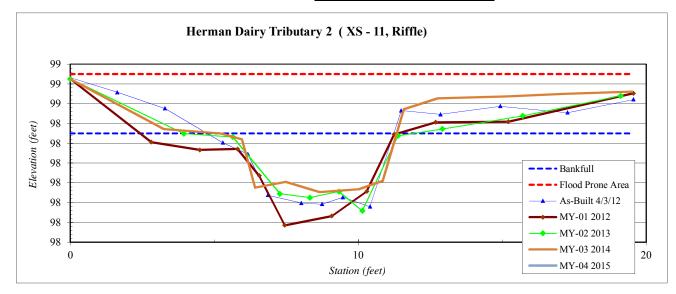
SUMMARY DATA	
Bankfull Elevation:	106.6
Bankfull Cross-Sectional Area:	12.8
Bankfull Width:	17.8
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	2.0
Mean Depth at Bankfull:	0.7
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 1 (XS - 10, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Elevation
106.7
106.9
106.9
106.8
106.0
105.5
105.3
105.2
105.3
105.6
105.7
106.1
106.5
106.92
106.56
106.83
106.88

SUMMARY DATA	
Bankfull Elevation:	106.8
Bankfull Cross-Sectional Area:	8.5
Bankfull Width:	8.4
Flood Prone Area Elevation:	108.3
Flood Prone Width:	>80
Max Depth at Bankfull:	1.5
Mean Depth at Bankfull:	1.0
W / D Ratio:	8.3
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

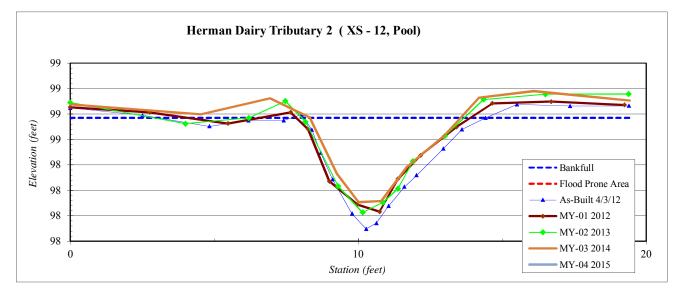
Stream Type	Stream Type	E/C
-------------	-------------	-----


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 11, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	98.6
3.2	98.4
5.3	98.3
6.0	98.3
6.4	98.1
7.5	98.1
8.7	98.1
10.0	98.1
10.8	98.1
11.6	98.5
12.8	98.5
15.1	98.5
17.1	98.5
19.5	98.56

SUMMARY DATA	
Bankfull Elevation:	98.4
Bankfull Cross-Sectional Area:	1.3
Bankfull Width:	6.1
Flood Prone Area Elevation:	98.7
Flood Prone Width:	>80
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	28.6
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

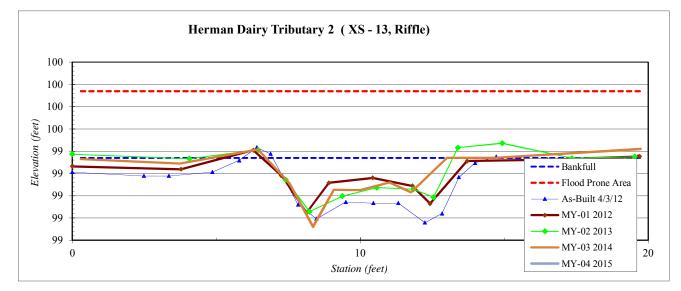
Stream Type E/C		Stream Type	E/C
-----------------	--	-------------	-----


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 12, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	98.9
4.5	98.8
6.9	98.9
8.3	98.8
9.2	98.3
10.0	98.1
10.8	98.1
11.7	98.4
13.0	98.6
14.2	98.9
16.1	99.0
19.4	98.9

SUMMARY DATA	
Bankfull Elevation:	98.8
Bankfull Cross-Sectional Area:	2.0
Bankfull Width:	5.2
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.7
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

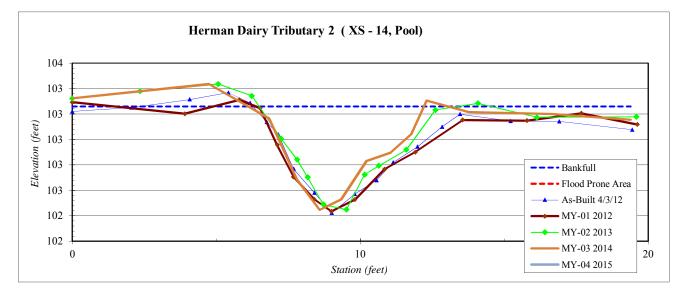
Stream Type E/C



Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 13, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.3	99.3
3.7	99.3
6.4	99.4
7.5	99.1
8.4	98.7
9.1	99.1
10.0	99.0
11.0	99.1
11.8	99.0
13.0	99.3
14.7	99.3
19.7	99.4

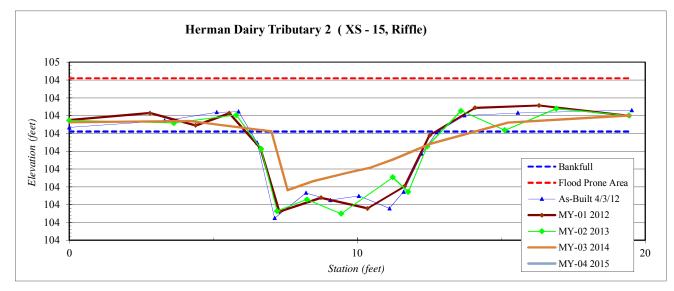
SUMMARY DATA	
Bankfull Elevation:	99.3
Bankfull Cross-Sectional Area:	1.7
Bankfull Width:	6.5
Flood Prone Area Elevation:	99.9
Flood Prone Width:	>80
Max Depth at Bankfull:	0.6
Mean Depth at Bankfull:	0.3
W / D Ratio:	24.9
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 14, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	103.3
4.7	103.4
6.8	103.2
7.8	102.7
8.6	102.4
9.3	102.5
10.2	102.8
11.0	102.9
11.8	103.0
12.3	103.3
13.8	103.2
16.6	103.2
19.4	103.2

SUMMARY DATA	
Bankfull Elevation:	103.3
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	5.8
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

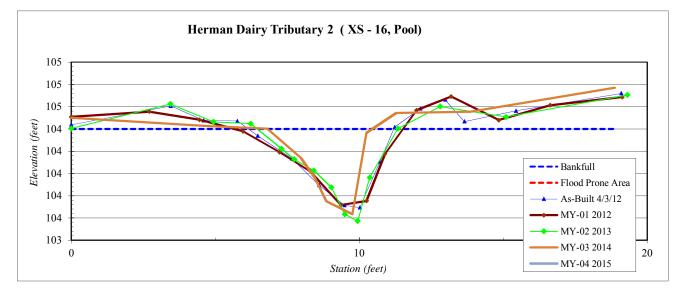
Stream Type	E/C


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 15, Riffle)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	104.2
4.2	104.2
6.4	104.1
7.0	104.1
7.6	103.8
8.5	103.8
9.6	103.9
10.5	103.9
11.2	104.0
12.6	104.0
15.2	104.2
19.5	104.2

SUMMARY DATA	
Bankfull Elevation:	104.1
Bankfull Cross-Sectional Area:	1.2
Bankfull Width:	7.1
Flood Prone Area Elevation:	104.4
Flood Prone Width:	>80
Max Depth at Bankfull:	0.3
Mean Depth at Bankfull:	0.2
W / D Ratio:	42.0
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

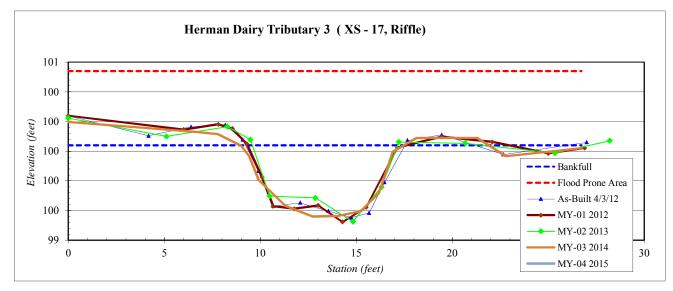
Stream Type	E/C



Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 2 (XS - 16, Pool)
Drainage Area (sq mi):	1.01
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Tiela Greini	
Station	Elevation
0.0	104.5
4.8	104.4
6.8	104.4
8.0	104.1
8.5	104.0
8.9	103.7
9.8	103.6
10.3	104.4
11.3	104.5
13.9	104.6
18.9	104.8
	1

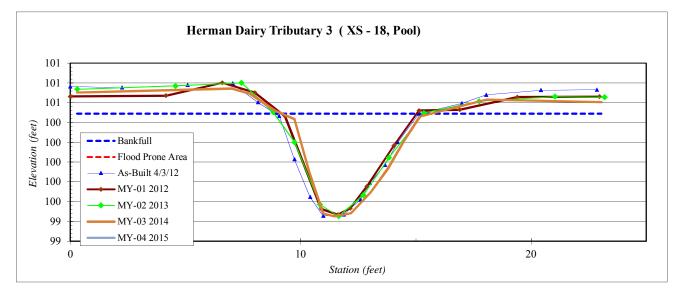
SUMMARY DATA	
Bankfull Elevation:	104.4
Bankfull Cross-Sectional Area:	1.4
Bankfull Width:	3.6
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.8
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 17, Riffle)
Drainage Area (sq mi):	0.06
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	100.2
6.4	100.1
7.8	100.1
9.0	100.0
9.4	100.0
9.9	99.8
11.3	99.6
12.7	99.6
14.0	99.6
15.2	99.6
16.2	99.7
16.9	100.0
18.1	100.1
21.3	100.09
22.8	99.97
26.7	100.02

SUMMARY DATA	
Bankfull Elevation:	100.0
Bankfull Cross-Sectional Area:	2.9
Bankfull Width:	8.5
Flood Prone Area Elevation:	100.5
Flood Prone Width:	>80
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	24.9
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0

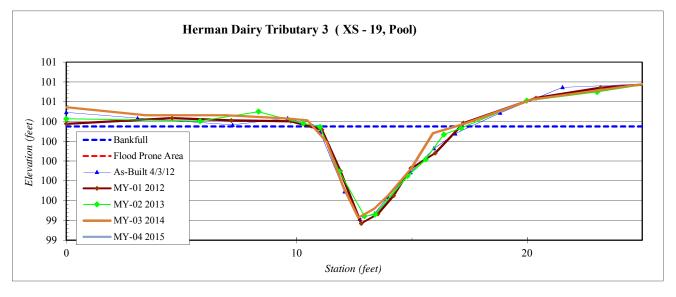
Stream Type	E/C


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 18, Pool)
Drainage Area (sq mi):	0.06
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.3	100.7
7.0	100.7
7.8	100.7
8.9	100.5
9.7	100.4
10.4	99.9
11.0	99.5
11.5	99.5
12.2	99.5
13.0	99.7
13.8	99.9
14.5	100.2
15.2	100.5
18.1	100.63
23.1	100.61

SUMMARY DATA	
Bankfull Elevation:	100.5
Bankfull Cross-Sectional Area:	3.6
Bankfull Width:	6.5
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	1.0
Mean Depth at Bankfull:	0.6
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

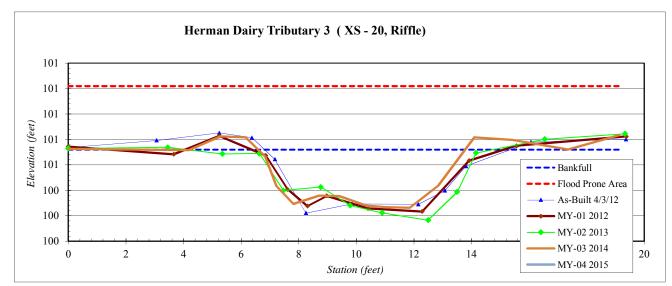
Stream	Type	E/C


Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 19, Pool)
Drainage Area (sq mi):	0.06
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

Station	Elevation
0.0	100.5
3.4	100.5
6.9	100.5
9.5	100.4
10.5	100.4
11.3	100.2
12.0	99.7
12.7	99.4
13.4	99.5
14.0	99.7
15.0	99.9
15.9	100.3
17.3	100.4
20.2	100.62
25.6	100.80

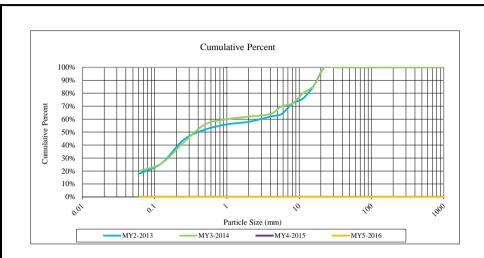
SUMMARY DATA	
Bankfull Elevation:	100.4
Bankfull Cross-Sectional Area:	2.7
Bankfull Width:	6.2
Flood Prone Area Elevation:	-
Flood Prone Width:	-
Max Depth at Bankfull:	0.9
Mean Depth at Bankfull:	0.4
W / D Ratio:	-
Entrenchment Ratio:	-
Bank Height Ratio:	-

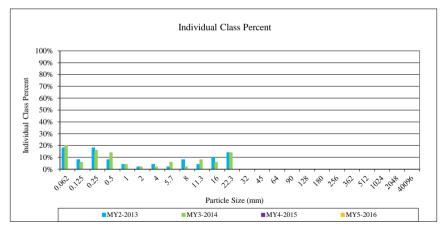
Stream Type	E/C



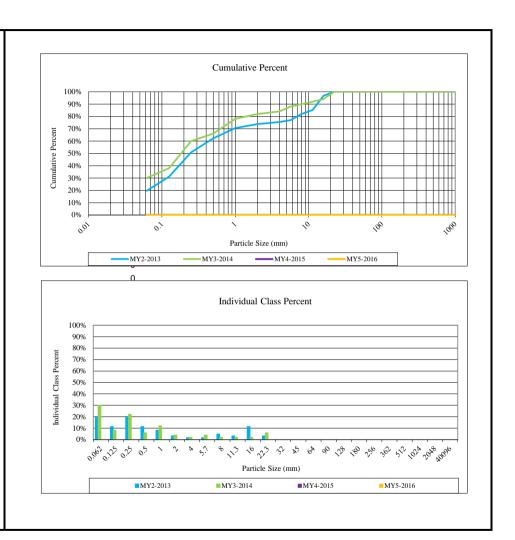
Site Name:	Herman Dairy
Watershed:	30501001120030
XS ID	Tributary 3 (XS - 20, Riffle)
Drainage Area (sq mi):	0.06
Date:	3/13/2014
Field Crew:	Perkinson, Jernigan

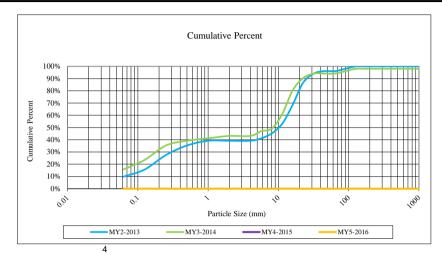
Station	Elevation
0.0	100.7
4.2	100.7
5.3	100.8
6.2	100.8
6.8	100.7
7.2	100.4
7.8	100.3
8.7	100.4
9.4	100.4
10.3	100.3
11.0	100.3
11.9	100.3
12.9	100.4
14.1	100.82
15.4	100.80
17.4	100.72
19.1	100.83

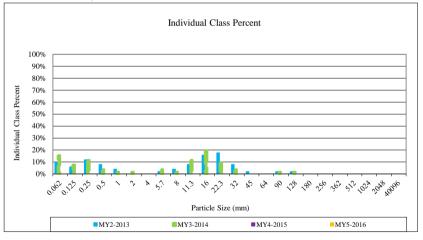

SUMMARY DATA	•
Bankfull Elevation:	100.7
Bankfull Cross-Sectional Area:	2.4
Bankfull Width:	7.2
Flood Prone Area Elevation:	101.2
Flood Prone Width:	>80
Max Depth at Bankfull:	0.5
Mean Depth at Bankfull:	0.3
W / D Ratio:	21.6
Entrenchment Ratio:	>5
Bank Height Ratio:	1.0



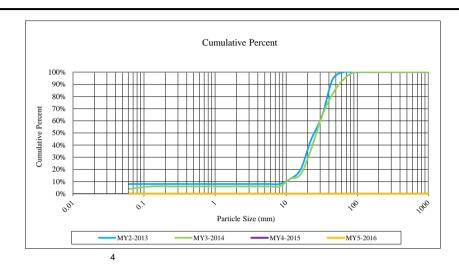
Project Name: Herman Dairy UT1					
	Cross-Se				
	Feature: Riffle				
	35. 11	G! ()	2014		
Description	Material	Size (mm) 0.062	Total #	Item % 20%	Cum % 36%
Silt/Clay	silt/clay				
	very fine sand	0.125	3	6%	44%
g 1	fine sand	0.250	8	16%	48%
Sand	medium sand	0.50	7	14%	48%
	coarse sand	1.00	2	4%	56%
	very coarse sand	2.0	1	2%	60%
	very fine gravel	4.0	1	2%	68%
	fine gravel	5.7	3	6%	72%
	fine gravel	8.0	1	2%	84%
	medium gravel	11.3	4	8%	92%
Gravel	medium gravel	16.0	3	6%	92%
	course gravel	22.3	7	14%	96%
	course gravel	32.0	0	0%	96%
	very coarse gravel	45	0	0%	96%
	very coarse gravel	64	0	0%	100%
	small cobble	90	0	0%	100%
Cobble	medium cobble	128	0	0%	100%
Copple	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
D13	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
TOTAL % of w	hole count		50	100%	100%

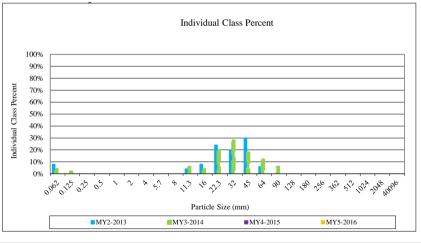

Summary Data			
D50	0.2		
D84	14		
D95	20		


	Project Name: Herman Dairy UT1				
		Section: 3			
	Feature: Riffle				
D '.'	3.6.4. 1.1	G* ()	2014		
Description	Material	Size (mm) 0.062	Total #	Item % 30%	Cum % 33%
Silt/Clay	silt/clay	0.062			
	very fine sand		4	8%	43%
G 1		0.250	11	22%	48%
Sand	medium sand	0.50	3	6%	52%
	coarse sand	1.00	6	12%	62%
	very coarse sand	2.0	2	4%	67%
	very fine gravel	4.0	1	2%	67%
	fine gravel	5.7	2	4%	67%
	fine gravel	8.0	1	2%	71%
	medium gravel	11.3	1	2%	76%
Gravel	medium gravel	16.0	1	2%	86%
	course gravel	22.3	3	6%	90%
	course gravel	32.0	0	0%	95%
	very coarse gravel	45	0	0%	95%
	very coarse gravel	64	0	0%	95%
	small cobble	90	0	0%	100%
Cobble	medium cobble	128	0	0%	100%
Copple	large cobble	180	0	0%	100%
	very large cobble	256	0	0%	100%
	small boulder	362	0	0%	100%
Boulder	small boulder	512	0	0%	100%
Boulder	medium boulder	1024	0	0%	100%
	large boulder	2048	0	0%	100%
Bedrock	bedrock	40096	0	0%	100%
TOTAL % of v	hole count		50	100%	100%

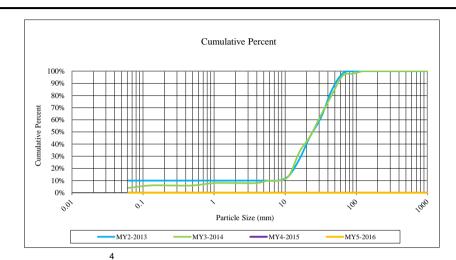

Summary Data			
D50	0.2		
D84	4		
D95	17		

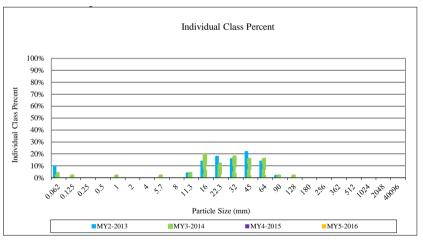
Project Name: Herman Dairy UT1						
		ection: 10				
Feature: Riffle						
		a. ()	- · · · · ·	2014		
Description	Material	Size (mm)	Total #	Item %	Cum %	
Silt/Clay	silt/clay	0.062	8	16%	24%	
	very fine sand	0.125	4	8%	32%	
	fine sand	0.250	6	12%	44%	
Sand	medium sand	0.50	2	4%	48%	
	coarse sand	1.00	1	2%	56%	
	very coarse sand	2.0	1	2%	60%	
	very fine gravel	4.0	0	0%	68%	
	fine gravel	5.7	2	4%	72%	
	fine gravel	8.0	1	2%	80%	
	medium gravel	11.3	6	12%	80%	
Gravel	medium gravel	16.0	10	20%	84%	
	course gravel	22.3	5	10%	96%	
	course gravel	32.0	2	4%	96%	
	very coarse gravel	45	0	0%	96%	
	very coarse gravel	64	0	0%	100%	
	small cobble	90	1	2%	100%	
Cobble	medium cobble	128	1	2%	100%	
Copple	large cobble	180	0	0%	100%	
	very large cobble	256	0	0%	100%	
	small boulder	362	0	0%	100%	
Boulder	small boulder	512	0	0%	100%	
Doulder	medium boulder	1024	0	0%	100%	
	large boulder	2048	0	0%	100%	
Bedrock	,				100%	
TOTAL % of v	vhole count		50	100%	100%	


Summary Data		
D50	8	
D84	17	
D95	29	

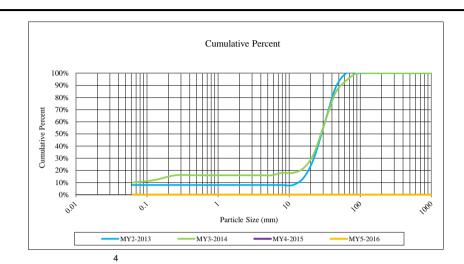


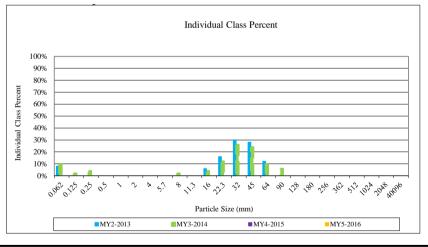
Project Name: Herman Dairy UT2						
		ection: 13				
	Feature: Riffle					
		a. ()	- · · · · ·	2014		
Description	Material	Size (mm)	Total #	Item %	Cum %	
Silt/Clay	silt/clay	0.062	2	4%	68%	
	very fine sand	0.125	1	2%	72%	
	fine sand	0.250		0%	84%	
Sand	medium sand	0.50		0%	84%	
	coarse sand	1.00		0%	88%	
	very coarse sand	2.0		0%	92%	
	very fine gravel	4.0		0%	100%	
	fine gravel	5.7		0%	100%	
	fine gravel	8.0		0%	100%	
	medium gravel	11.3	3	6%	100%	
Gravel	medium gravel	16.0	2	4%	100%	
	course gravel	22.3	10	20%	100%	
	course gravel	32.0	14	28%	100%	
	very coarse gravel	45	9	18%	100%	
	very coarse gravel	64	6	12%	100%	
	small cobble	90	3	6%	100%	
Cobble	medium cobble	128		0%	100%	
Copple	large cobble	180	0	0%	100%	
	very large cobble	256	0	0%	100%	
	small boulder	362	0	0%	100%	
Boulder	small boulder	512	0	0%	100%	
Doulder	medium boulder	1024	0	0%	100%	
	large boulder	2048	0	0%	100%	
Bedrock	Bedrock bedrock 40096 0 0%				100%	
TOTAL % of v	hole count		50	100%	100%	


Summary Data		
D50	26.5	
D84	48	
D95	68	



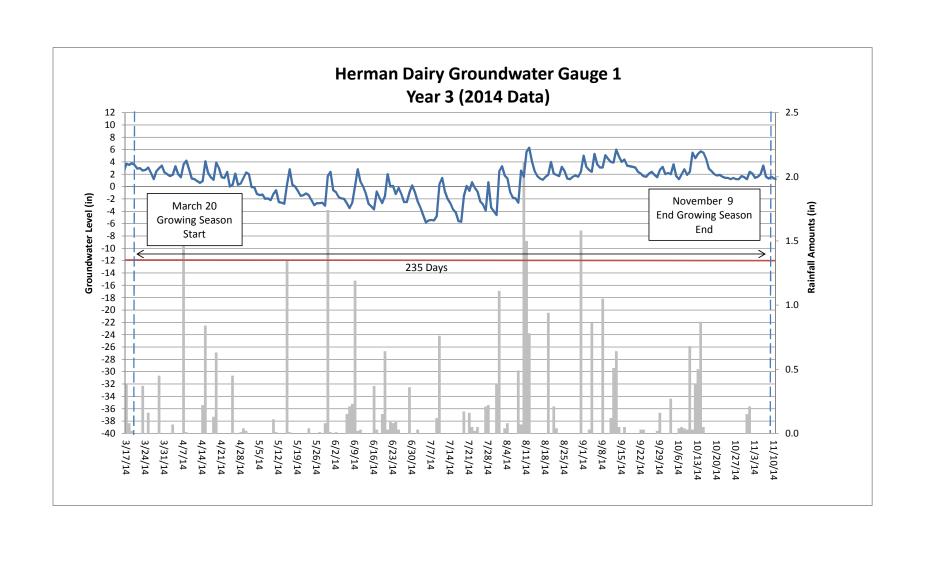
	Project Name: Herman Dairy UT2					
		ection: 15				
	Feature: Riffle					
D 1.1	35 / 13	g. ()	TD 4 1 //	2014		
Description	Material	Size (mm) 0.062	Total #	Item %	Cum % 68%	
Silt/Clay	silt/clay					
	very fine sand	0.125	1	2%	72%	
G 1	fine sand	0.250		0%	84%	
Sand	medium sand	0.50		0%	84%	
	coarse sand	1.00	1	2%	88%	
	very coarse sand	2.0		0%	92%	
	very fine gravel	4.0		0%	100%	
	fine gravel	5.7	1	2%	100%	
	fine gravel	8.0		0%	100%	
	medium gravel	11.3	2	4%	100%	
Gravel	medium gravel	16.0	10	20%	100%	
	course gravel	22.3	6	12%	100%	
	course gravel	32.0	9	18%	100%	
	very coarse gravel	45	8	16%	100%	
	very coarse gravel	64	8	16%	100%	
	small cobble	90	1	2%	100%	
Cobble	medium cobble	128	1	2%	100%	
Copple	large cobble	180		0%	100%	
	very large cobble	256	0	0%	100%	
	small boulder	362	0	0%	100%	
Boulder	small boulder	512	0	0%	100%	
Dominer	medium boulder	1024	0	0%	100%	
	large boulder	2048	0	0%	100%	
Bedrock						
TOTAL % of v	vhole count		50	100%	100%	

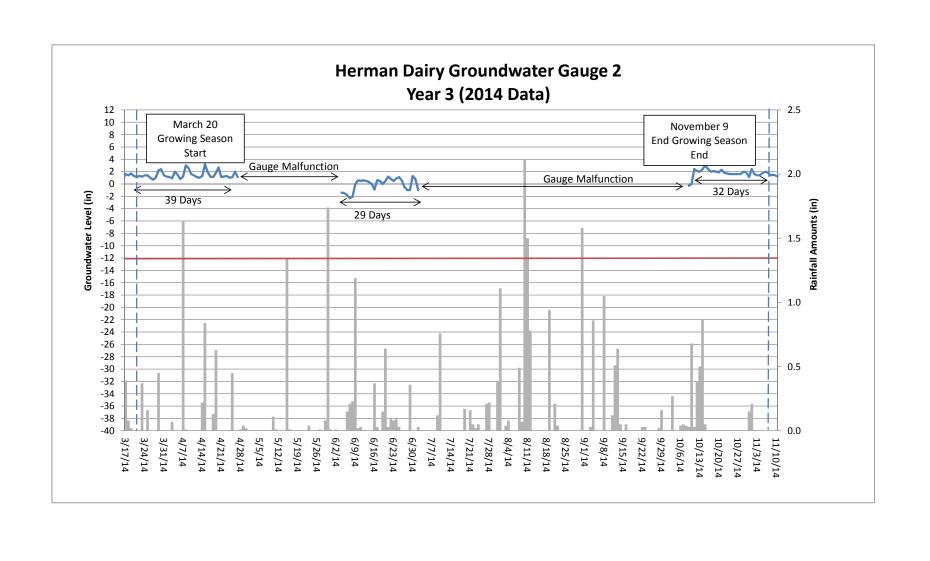

Summary Data		
D50	23.9	
D84	49	
D95	63	

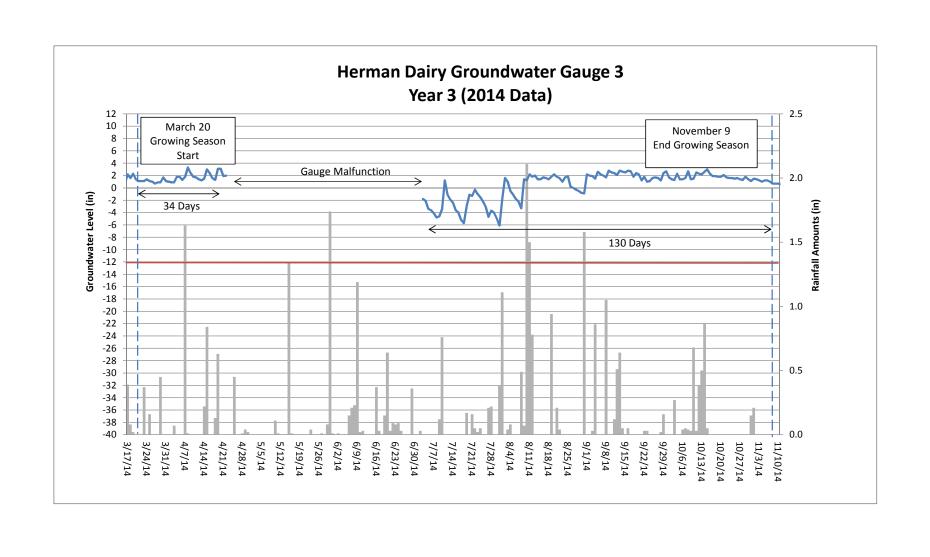


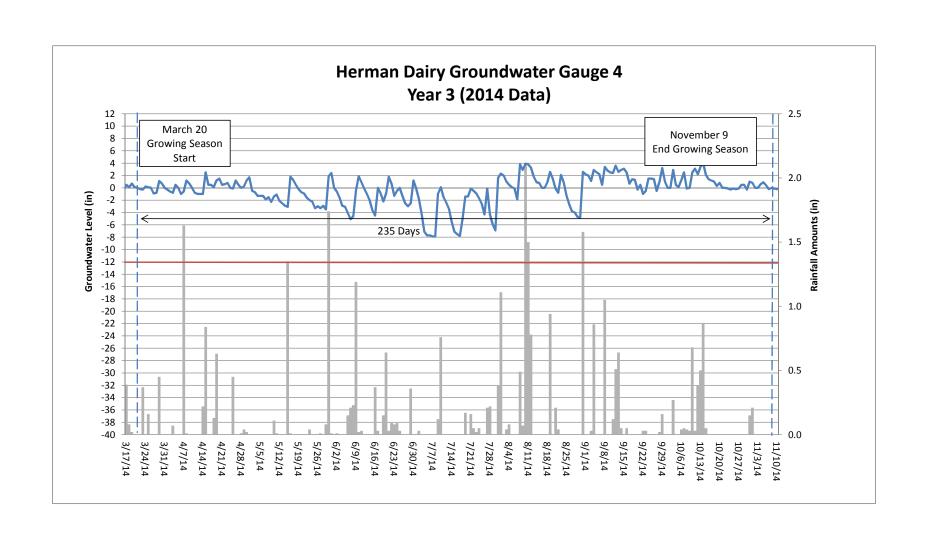
Project Name: Herman Dairy UT3							
Cross-Section: 17							
Feature: Riffle							
Dii	Material Starter		2014 Total # Item % Cum %				
Description Silt/Clay	Material silt/clay	Size (mm) 0.062	10ta1#	Item % 10%	Cum % 68%		
Sand	very fine sand	0.002	1	2%	72%		
	fine sand	0.123	2	4%	84%		
	medium sand		2		0.77		
		0.50		0%	84%		
	coarse sand	1.00		0%	88%		
	very coarse sand	2.0		0%	92%		
Gravel	very fine gravel	4.0		0%	100%		
	fine gravel	5.7		0%	100%		
	fine gravel	8.0	1	2%	100%		
	medium gravel	11.3		0%	100%		
	medium gravel	16.0	2	4%	100%		
	course gravel	22.3	6	12%	100%		
	course gravel	32.0	13	26%	100%		
	very coarse gravel	45	12	24%	100%		
	very coarse gravel	64	5	10%	100%		
Cobble	small cobble	90	3	6%	100%		
	medium cobble	128		0%	100%		
	large cobble	180	0	0%	100%		
	very large cobble	256	0	0%	100%		
Boulder	small boulder	362	0	0%	100%		
	small boulder	512	0	0%	100%		
	medium boulder	1024	0	0%	100%		
	large boulder	2048	0	0%	100%		
Bedrock	bedrock	40096	0	0%	100%		
TOTAL % of whole count			50	100%	100%		

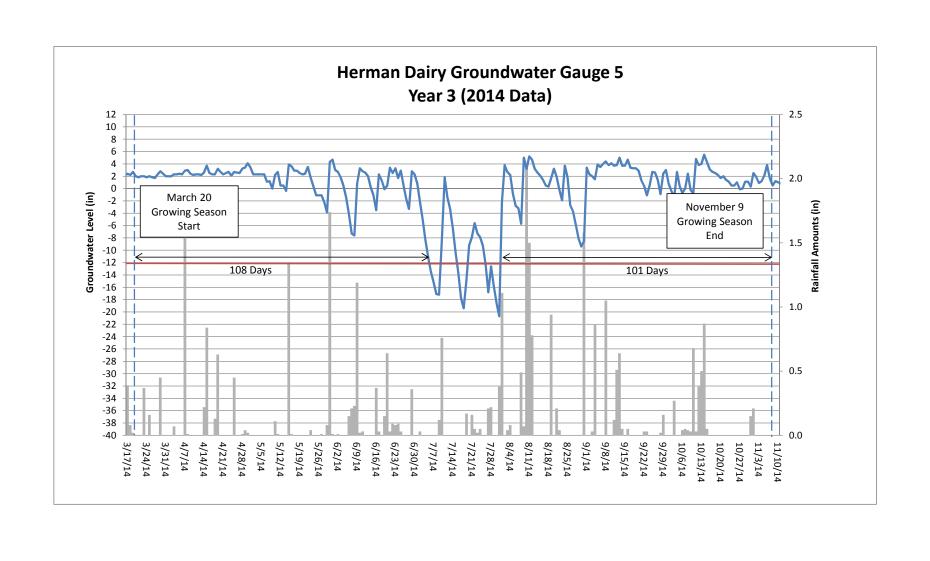
Summary Data					
D50	27.7				
D84	45				
D95	68				

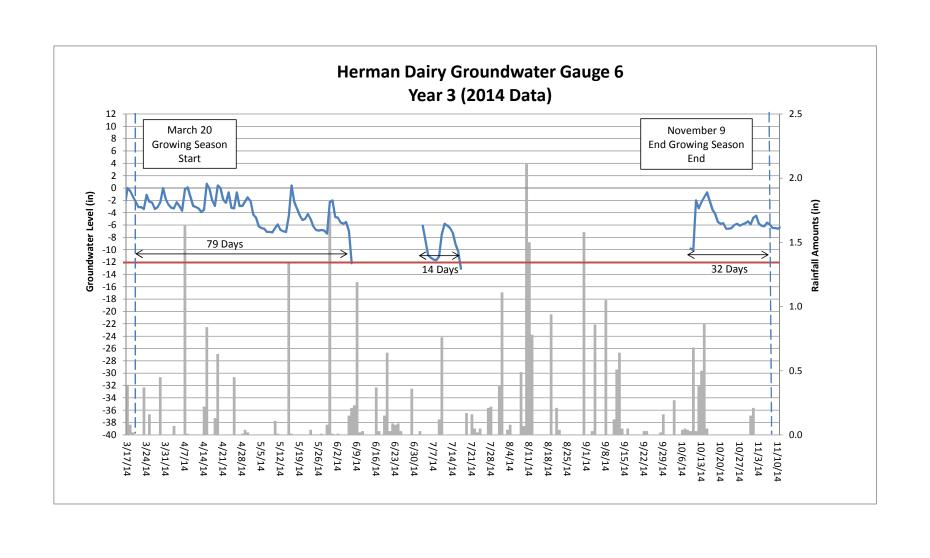


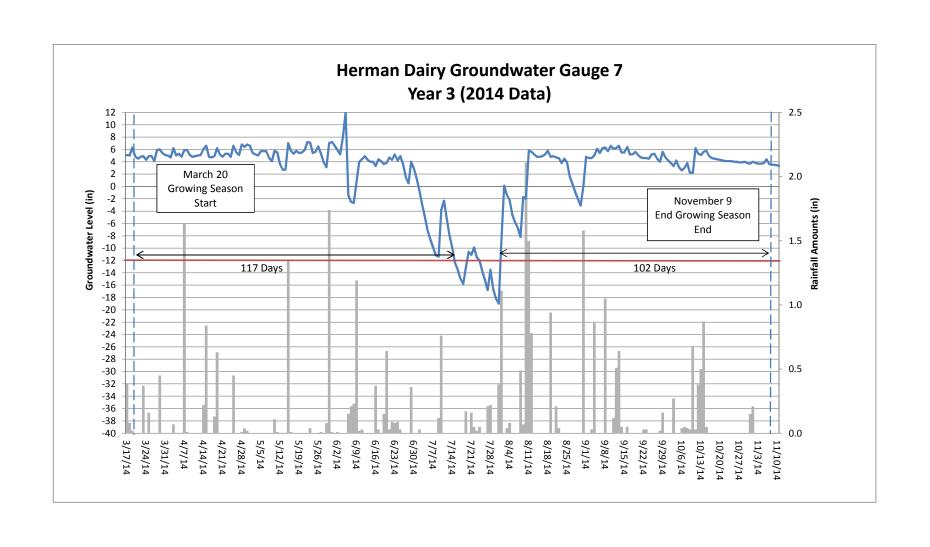

Appendix E. Hydrology Data

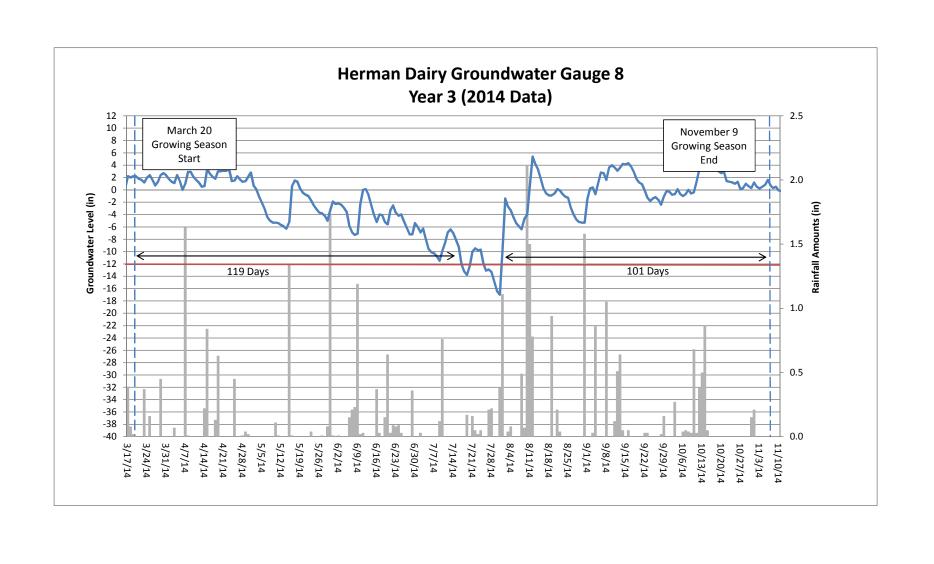

Table 12. Wetland Hydrology Criteria Attainment 2014 Groundwater Gauge Graphs Figure E1. Annual Climatic Data vs. 30-year Historic Data

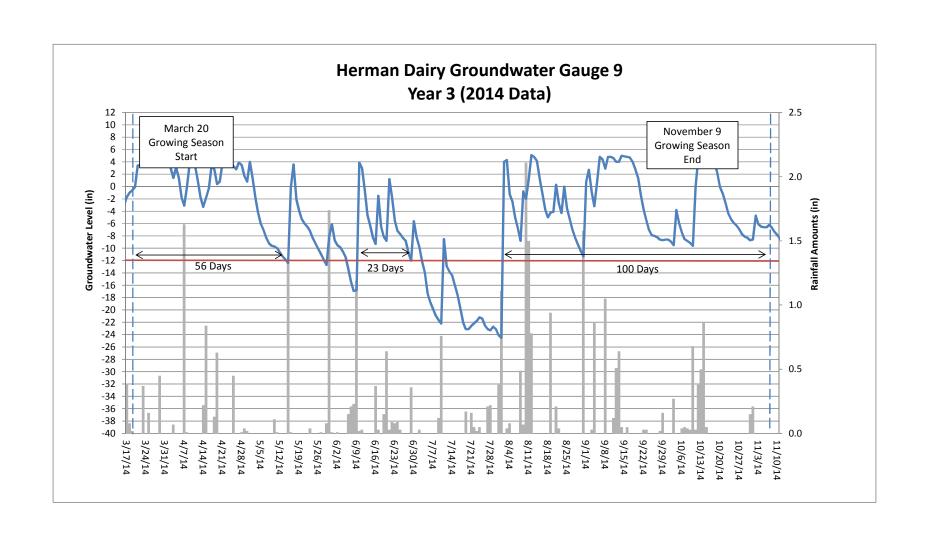

Table 12. Wetland Hydrology Criteria Attainment

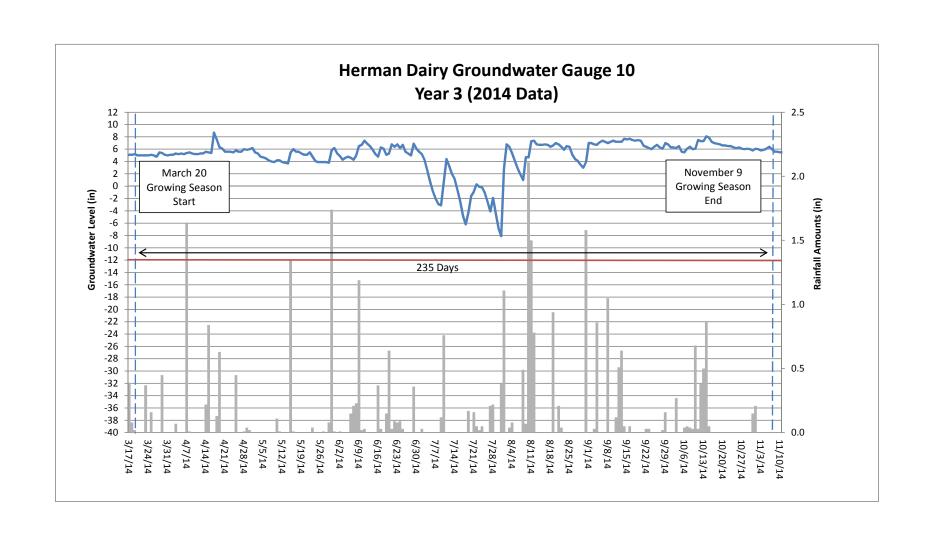

	Success Criter		•	During Growing S	eason					
Gauge	(Percentage)									
	Year 1 (2012)	Year 2 (2013)	Year 3 (2014)	Year 4 (2015)	Year 5 (2016)					
1	Yes/38 days	Yes/235 days	Yes/235 days							
1	(16.2 percent)	(100 percent)	(100 percent)							
2	Yes/101days	Yes/235 days	Yes/39 days							
2	(43 percent)	(100 percent)	(16.6 percent)							
2	Yes/226 days	Yes/235 days	Yes/130 days							
3	(96.2 percent)	(100 percent)	(55.3 percent)							
4	Yes/226 days	Yes/46 days	Yes/235 days							
4	(96.2 percent)	(19.6 percent)	(100 percent)							
_	Yes/87 days	Yes/179 days	Yes/108 days							
5	(37.0 percent)	(76.2 percent)	(46 percent)							
6	Yes/100 days	Yes/235 days	Yes/79 days							
U	(42.5 percent)	(100 percent)	(33.6 percent)							
7	Yes/235 days	Yes/235days	Yes/117 days							
/	(100 percent)	(100 percent)	(49.8 percent)							
8	Yes/178 days	Yes/193 days	Yes/119 days							
0	(75.7 percent)	(82.1 percent)	(50.6 percent)							
9	Yes/29 days	Yes/104 days	Yes/100 days							
9	(12.3 percent)	(44.2 percent)	(42.6 percent)							
10	Yes/102 days	Yes/235 days	Yes/235 days							
10	(43.4 percent)	(100 percent)	(100 percent)							
Ref	Yes/148 days	Yes/235 days	Yes/235 days							
Kei	(62.9 percent)	(100 percent)	(100 percent)							

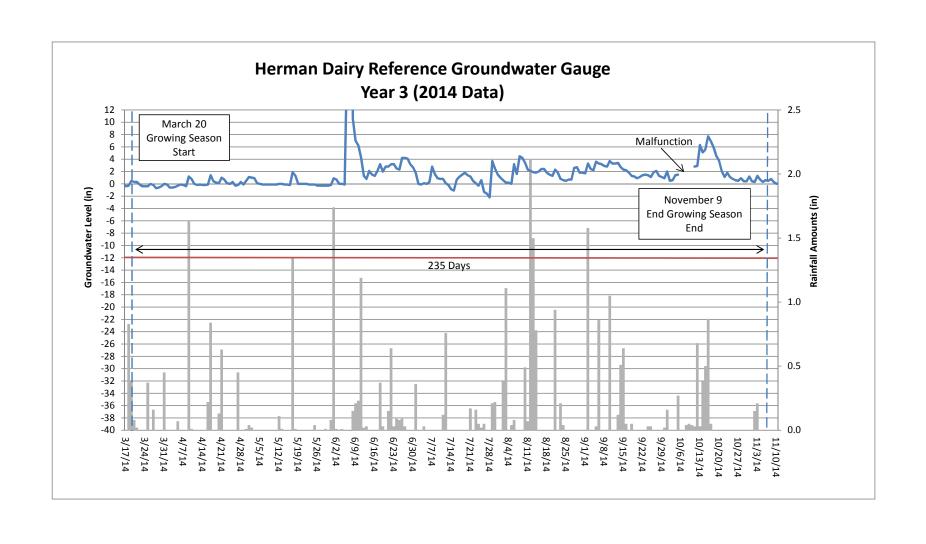


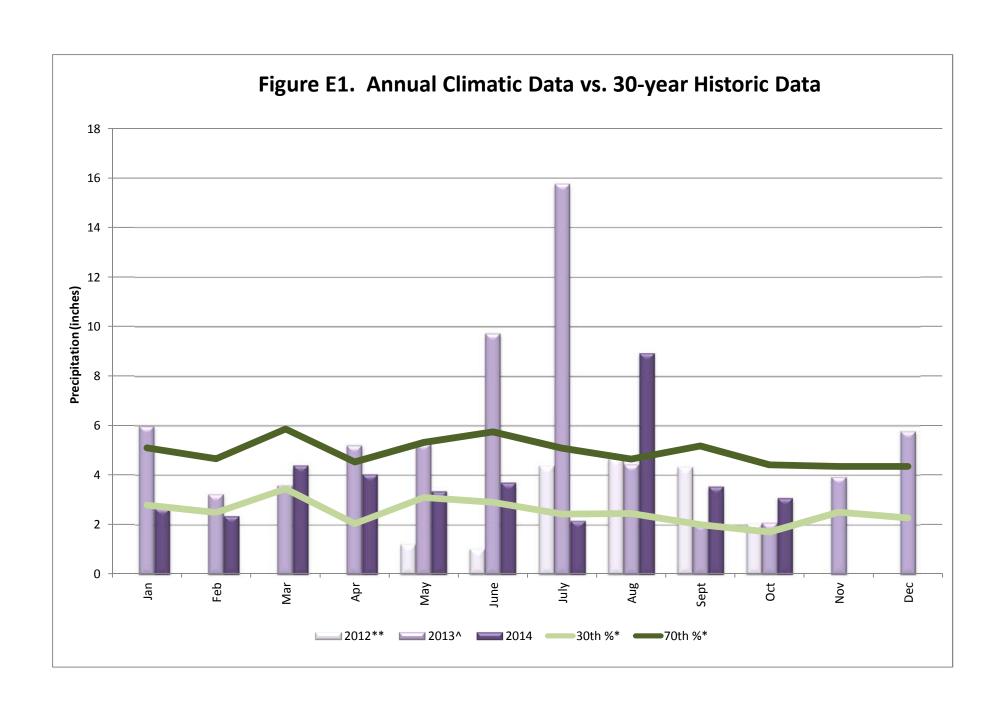












Appendix F. Benthic Data

2014 Benthic Data Lab Results 2014 Habitat Assessment Field Datasheets

SPECIES	Tolerance Values	Functional Feeding Groups	UT1	UT 2
ARTHROPODA				
Crustacea				
Isopoda Asellidae		SH		
	8.4	CG		1
Callembala	0.4	CG		1
Collembola			1	
Isotomidae			1	
Insecta				
Ephemeroptera				
Baetidae	0.4			
Baetis pluto	3.4		2	
Odonata		_		
Libellulidae		Р		
Plathemis lydia	9.8			3
Trichoptera				
Hydropsychidae			_	
Hydropsyche depravata gp.	7.9	FC	9	
Coleoptera				
Dytiscidae		Р		1
Scirtidae		SC		
Scirtes sp.				5
Diptera				
Chironomidae				
Chironomus sp.	9.3	CG	5	
Conchapelopia sp.	8.4	Р	1	
Polypedilum illinoense gp.	8.7	SH	1	
Psectrotanypus dyari	10	Р	1	
Stictochironomus devinctus	5.4	CG	9	
Tanytarsus sp.	6.6	FC	2	
Simuliidae		FC		
Simulium vittatum	9.1		7	
Ptychopteridae				
Bittacomorpha sp.				9
Tipulidae		SH		
Tipula sp.	7.5	SH	2	
TOTAL NO. OF ORGANISMS			40	19
TOTAL NO. OF TAXA			11	5
EPT			2	0
Biotic Index-Assigned Values			7.76	9.45

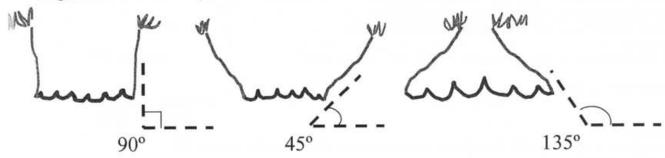
Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

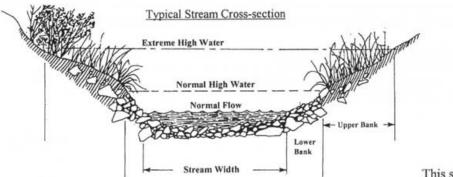
upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions,

Herman Dainy

Biological Assessment Unit, DWQ

TOTAL SCORE 76 Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an


select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
Stream UT Muddy Fork Location/road: Church Rd (Road Name) County Alexander
Date 6/27/14 CC# 030501011200830 (afauba Subbasin 03-08-02
Observer(s) PHP Type of Study: Fish Benthos Basinwide Special Study (Describe)
Latitude 4.9316 Longitude -81,2069 Ecoregion: MT P Slate Belt Triassic Basin
Water Quality: Temperature0C DOmg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: %Forest %Residential 42 %Active Pasture 43 % Active Crops %Fallow Fields %Commercial %Industrial 10 %Other - Describe: Vipaviay beffer vestor at 51. animal operations upstream
Width: (meters) Stream Channel (at top of bank) Stream Depth: (m) Avg 0.5 Max Width variable Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 0.75-
Bank Angle: or _ NA
D. Root mats out of water
Weather Conditions:
Remarks: Yen tybis, high ted load P-10


				vtI	
I. Channel Modification				S	Score
A. channel natural, frequent bends					
B. channel natural, infrequent bends (channeli					
C. some channelization present				3	
D. more extensive channelization, >40% of str	ream disr	upted		2	
E. no bends, completely channelized or rip rap	oped or g	abioned, etc		0)
☐ Evidence of dredging ☐ Evidence of desnagging=no larg	ge woody	debris in stream	Banks of unifo	rm shape/heig	ht _
Remarks				Subto	otal
	e sa en s	a 210 320 St 520		40.00	200233181 (4852)
II. Instream Habitat: Consider the percentage of the reach reach is rocks, 1 type is present, circle the score of 17. Defin begun to decay (not piles of leaves in pool areas). Mark as	nition: le	afpacks consist of o	lder leaves that		
Rocks Macrophytes Sticks and leafpack	s <u>A</u> s	nags and logs	Undercut ban	ks or root ma	ts
AMOUNT OF REACH FAVOR	RABLE 1 >70%	FOR COLONIZAT 40-70%	TION OR COV 20-40%	/ER <20%	
	Score	Score	Score	Score	
4 or 5 types present	20	16	12	8	
3 types present	19	15	11	7	
2 types present	18	14	10	6	
1 type present	17	13	9	5	
No types present	0				_
☐ No woody vegetation in riparian zone Remarks_				Sul	btotal
2. embeddedness >50% D. substrate homogeneous 1. substrate nearly all bedrock 2. substrate nearly all sand 3. substrate nearly all detritus 4. substrate nearly all silt/ clay Remarks IV. Pool Variety Pools are areas of deeper than average	k for "mu nd boulde usually o	nd line" or difficulty ers nly behind large bou	extracting rock ilders)	Subtorbulence. Wat	Score 5 2 3 4 1 5 2 3 4 1 6 bital φ er velocities
associated with pools are always slow. Pools may take the large high gradient streams, or side eddies. A. Pools present 1. Pools Frequent (>30% of 200m area surveyed) a. variety of pool sizes				5	Score
b. pools about the same size (indicates po					3
Pools Infrequent (<30% of the 200m area surve	yed)				760 200
a. variety of pool sizes					5
b. pools about the same size					1
B. Pools absent					1 0
				Subtota	
☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-sink	k as you v	walk Silt bottom	☐ Some pools	over wader de	epth
Remarks				1	Page Total 20

	UT	1
V. Riffle Habitats		
Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequen Score		nfrequent
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16	12	
B. riffle as wide as stream but riffle length is not 2X stream width	7	
C. riffle not as wide as stream and riffle length is not 2X stream width	3	
D. riffles absent	Sub	total 14
VI. Bank Stability and Vegetation		
FACE UPSTREAM	eft Bank	Rt. Bank
	Score	Score
A. Banks stable	10	()
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion	n (7)	0
B. Erosion areas present		
1. diverse trees, shrubs, grass; plants healthy with good root systems	6	6
2. few trees or small trees and shrubs; vegetation appears generally healthy		5
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		5
4. mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow		2
5. little or no bank vegetation, mass erosion and bank failure evident		0
		otal
Remarks		
A. Stream with good canopy with some breaks for light penetration		Score 10 8 7 2 0
Remarks		Subtotal
VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: □ Trees □ Shrubs □ Grasses □ Weeds/old field □ Exotics (kudzu, etc) A. Riparian zone intact (no breaks) 1. width > 18 meters		m, such as paths
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common	520	2
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	0 1 2
Remarks	T	otal 0
☐ Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream. TOT	Page To	

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

This side is 45° bank angle.

Site Sketch:

Other comments:

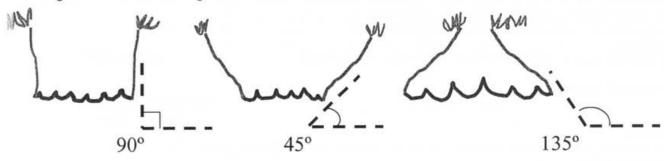
Weather Conditions: Couch

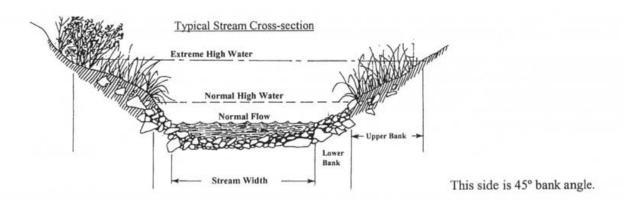
Remarks:

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

TOTAL SCORE 78 Biological Assessment Unit, DWQ Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an

upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
Stream UT Muddy FOR Location/road: Christin Rd (Road Name) County Alexander
Date 4/27/14 CC# 0305010112003 Basin Catawha Subbasin 03-08-32
Observer(s) PHP Type of Study: □ Fish □ Benthos □ Basinwide □ Special Study (Describe)
Latitude 35.93 1 Longitude 81,2009 Ecoregion: □MT ☑P □ Slate Belt □ Triassic Basin
Water Quality: Temperature0C DOmg/l Conductivity (corr.)µS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: 5 %Forest %Residential %Active Pasture 75 % Active Crops %Fallow Fields %Commercial %Industrial 0 %Other - Describe: vip an an buffer vestor and ve
Watershed land use : ☐Forest ☐Agriculture ☐Urban ☐Animal operations upstream
Width: (meters) Stream 2 Channel (at top of bank) 3 Stream Depth: (m) Avg 0.1-0,2 Max 0.2 Width variable Large river >25m wide Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 0.5
Bank Height (from deepest part of riffle to top of bank-first flat surface you stand on): (m) 0.5
Bank Angle: ° or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) □ Channelized Ditch
□ Deeply incised-steep, straight banks □ Both banks undercut at bend □ Channel filled in with sediment □ Recent overbank deposits □ Bar development □ Buried structures □ Exposed bedrock
□ Recent overbank deposits □ Bar development □ Buried structures □ Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □ Green tinge □ Sewage smell
Manmade Stabilization: □N □Y: □Rip-rap, cement, gabions □ Sediment/grade-control structure □Berm/levee
Flow conditions: High Normal Low
Turbidity: □Clear □ Slightly Turbid □Turbid □Tannic □Milky □Colored (from dyes)
Good potential for Wetlands Restoration Project?? YES NO Details
Channel Flow Status
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed
B. Water fills >75% of available channel, or <25% of channel substrate is exposed
C. Water fills 25-75% of available channel, many logs/snags exposed
D. Root mats out of water
E. Very little water in channel, mostly present as standing pools


Photos: □N □Y □ Digital □35mm


				VT2
I. Channel Modification				Score
A. channel natural, frequent bends				(5)
B. channel natural, infrequent bends (channeli				
C. some channelization present				
D. more extensive channelization, >40% of str				
E. no bends, completely channelized or rip rap				
 □ Evidence of dredging □Evidence of desnagging=no larg Remarks 	ge woody o	debris in stream	JBanks of unito	Subtotal 5
Remarks				Subtotal
II. Instream Habitat: Consider the percentage of the reach reach is rocks, 1 type is present, circle the score of 17. Definition begun to decay (not piles of leaves in pool areas). Mark as Rocks A Macrophytes Sticks and leafpack	nition: lea	fpacks consist of on nmon, or Abundan	older leaves that t.	are packed together and have
AMOUNT OF REACH FAVOI		1500 SWI 1-01 -		
	>70%	40-70%	20-40%	<20%
	Score	Score	Score	Score
4 or 5 types present	20	16	12	8
3 types present	19	15	11	7
2 types present	18	14	10	6
1 type present	17	13	9	5
No types present	0			Subtotal 15
☐ No woody vegetation in riparian zone Remarks_				Subtotal
1. embeddedness <20% (very little sand, 2. embeddedness 20-40%				
Proceducing				
IV. Pool Variety Pools are areas of deeper than average associated with pools are always slow. Pools may take the large high gradient streams, or side eddies.				
A. Pools present				Score
1. Pools Frequent (>30% of 200m area surveyed)				m
a. variety of pool sizes				
b. pools about the same size (indicates po		in)		8
2. Pools Infrequent (<30% of the 200m area surve				
a. variety of pool sizes				6
b. pools about the same size				
B. Pools absent				Subtotal \O
☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-sink	r as von w	alk Silt bottom	☐ Some pools	
Remarks	ao you w	= om oonom	_ come pools	
				Page Total 36

V. Riffle Habitats		672
Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. Riffles Frequen	t Riffles I	nfrequent
Scor	e Score	
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream (16)	12	
B. riffle as wide as stream but riffle length is not 2X stream width	7	
C. riffle not as wide as stream and riffle length is not 2X stream width 10	3	
D. riffles absent. 0		1.6
Channel Slope: ☐ Typical for area ☐ Steep=fast flow ☐ Low=like a coastal stream	Sub	total Q
VI. Bank Stability and Vegetation		
	Left Bank Score	Rt. Bank Score
A. Banks stable	(7)	6)
little evidence of erosion or bank failure(except outside of bends), little potential for erosion	on(<i>D</i>)	0
B. Erosion areas present	6	6
 diverse trees, shrubs, grass; plants healthy with good root systems. few trees or small trees and shrubs; vegetation appears generally healthy. 		6
3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding		5 3 2
4. mostly grasses , few if any trees and shrubs, high erosion and failure potential at high flow		3
5. little or no bank vegetation, mass erosion and bank failure evident		0
5. Hittle of no bank vegetation, mass crosion and bank familie evident		otal 14
Remarks	1	Otal
Totalito		
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surf	ace Canony	would block out
sunlight when the sun is directly overhead. Note shading from mountains, but not use to score the		mound block out
sumght when the sair is directly overhead. Note shading from mountains, out not use to score the	S metre.	Score
A. Stream with good canopy with some breaks for light penetration		10
B. Stream with full canopy - breaks for light penetration absent		8
C. Stream with partial canopy - sunlight and shading are essentially equal		7
D. Stream with minimal canopy - full sun in all but a few areas		6
E. No canopy and no shading		7 (2) 0
27.10 Tanop, 112.10 Tanop		,
Remarks		Subtotal Z
VIII. Riparian Vegetative Zone Width		
Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond		
in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly en	nter the strea	m, such as paths
down to stream, storm drains, uprooted trees, otter slides, etc.	50.0	
FACE UPSTREAM	Lft. Bank	Rt. Bank
Dominant vegetation: ☐ Trees ☐ Shrubs ☐ Grasses ☐ Weeds/old field ☐ Exotics (kudzu, etc)	Score	Score
A. Riparian zone intact (no breaks)	(3)	0
1. width > 18 meters	(5)	(5)
2. width 12-18 meters	4	4
3. width 6-12 meters	3	3
4. width < 6 meters	2	2
B. Riparian zone not intact (breaks)		
1. breaks rare		
a. width > 18 meters	4	4
b. width 12-18 meters	3	3
c. width 6-12 meters	2	2
d. width < 6 meters	1	1
2. breaks common	202	
a. width > 18 meters	3	3
b. width 12-18 meters	2	2
c. width 6-12 meters	1	1
d. width < 6 meters	0	0
Remarks	T	otal\U_
		. 47
☐ Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream. TOT	Page To	
	A T CONTAIN	7//3

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

Site Sketch:

er comments:			
		-	

Habitat Assessment Field Data Sheet Mountain/ Piedmont Streams

Directions for use: The observer is to survey a minimum of 100 meters with 200 meters preferred of stream, preferably in an upstream direction starting above the bridge pool and the road right-of-way. The segment which is assessed should represent average

UT3

Biological Assessment Unit, DWQ

TOTAL SCORE 8

stream conditions. To perform a proper habitat evaluation the observer needs to get into the stream. To complete the form, select the description which best fits the observed habitats and then circle the score. If the observed habitat falls in between two descriptions, select an intermediate score. A final habitat score is determined by adding the results from the different metrics.
Stream UT Muddy Fork Location/road: Three Forks (Road Name) County Akkander
Date 6/27/14 CC# 03050101/2 0090 Basin (a+aw/0a Subbasin 03-08-32
Observer(s) PHP Type of Study: □ Fish ☑Benthos □ Basinwide □Special Study (Describe)
Latitude 35.93 U Longitude -01,2069 Ecoregion: MT P Slate Belt Triassic Basin
Water Quality: Temperature0C DOmg/l Conductivity (corr.)μS/cm pH
Physical Characterization: Visible land use refers to immediate area that you can see from sampling location - include what you estimate driving thru the watershed in watershed land use.
Visible Land Use: %Forest %Residential 42 %Active Pasture 43 % Active Crops %Fallow Fields %Commercial %Industrial 10 %Other - Describe: y payary beffer victoration Watershed land use:
Width: (meters) Stream Channel (at top of bank) Stream Depth: (m) Avg 0.5 Max
Bank Angle: o or □ NA (Vertical is 90°, horizontal is 0°. Angles > 90° indicate slope is towards mid-channel, < 90° indicate slope is away from channel. NA if bank is too low for bank angle to matter.) □ Channelized Ditch □ Deeply incised-steep, straight banks □ Both banks undercut at bend □ Channel filled in with sediment □ Recent overbank deposits □ Bar development □ Buried structures □ Exposed bedrock □ Excessive periphyton growth □ Heavy filamentous algae growth □ Green tinge □ Sewage smell Manmade Stabilization: □ N □ Y: □ Rip-rap, cement, gabions □ Sediment/grade-control structure □ Berm/levee Flow conditions: □ High □ Normal □ Low Turbidity: □ Clear □ Slightly Turbid □ Turbid □ Tannic □ Milky □ Colored (from dyes) Good potential for Wetlands Restoration Project?? □ YES □ NO Details Channel Flow Status
Useful especially under abnormal or low flow conditions. A. Water reaches base of both lower banks, minimal channel substrate exposed
Weather Conditions: New Photos: N N DY Digital 35mm
Remarks: No water present during visit; therefore, no benthic samples

				Ut3
I. Channel Modification				Score
A. channel natural, frequent bends				
B. channel natural, infrequent bends (channel				
C. some channelization present				
D. more extensive channelization, >40% of st				
 E. no bends, completely channelized or rip rap 	oped or g	abioned, etc		0
☐ Evidence of dredging ☐ Evidence of desnagging=no large	ge woody	debris in stream [☐Banks of unifo	
Remarks				Subtotal >
II. Instream Habitat: Consider the percentage of the reach reach is rocks, 1 type is present, circle the score of 17. Defibegun to decay (not piles of leaves in pool areas). Mark as A Rocks Macrophytes Sticks and leafpack	nition: le Rare, Co	afpacks consist of o	older leaves that at.	are packed together and have
AMOUNT OF REACH FAVOR				
	>70%	40-70%	20-40%	<20%
	Score	Score	Score	Score
4 or 5 types present	20	16	12	8
3 types present	19	(15)	11	7
2 types present	18	14	10	6
1 type present	17	13	9	5
No types present	0			15
☐ No woody vegetation in riparian zone Remarks_				Subtotal 5
for embeddedness, and use rocks from all parts of riffle-loo A. substrate with good mix of gravel, cobble ar 1. embeddedness <20% (very little sand, 2. embeddedness 20-40%	nd boulde usually o	ers nly behind large bo	ulders)	Score 15 12 8 3 14 11 6 2 8 4 3 2
33333003333				
IV. Pool Variety Pools are areas of deeper than average associated with pools are always slow. Pools may take the large high gradient streams, or side eddies.				
A. Pools present				Score
1. Pools Frequent (>30% of 200m area surveyed)				
a. variety of pool sizes				
b. pools about the same size (indicates po		g in)		8
2. Pools Infrequent (<30% of the 200m area surve				4
a. variety of pool sizes				
b. pools about the same size				
B. Pools absent				Subtotal \D
☐ Pool bottom boulder-cobble=hard ☐ Bottom sandy-sinl	. 96 1/011	walk Cilt hottom	□ Some pools	
Remarks	as you v	vaik 🗀 Siit bottom	- Some poors	over wader deput
Itoliidi ka				Page Total 4

A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16 12 2 B. riffle as wide as stream but riffle length is not 2X stream width 16 12 7 7 C. riffle not as wide as stream and riffle length is not 2X stream width 10 3 D. riffles absent 0 Subtotal			
Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream. B. riffle as wide as stream and riffle length is not 2X stream width. C. riffle not as wide as stream and riffle length is not 2X stream width. D. riffles absent. C. riffle not as wide as stream and riffle length is not 2X stream width. D. riffles absent. C. riffle not as wide as stream and riffle length is not 2X stream width. D. riffles absent. FACE UPSTREAM FACE UPSTREAM FACE UPSTREAM FACE UPSTREAM A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. D. for a comparison of the comparison o			
Definition: Riffle is area of reaeration-can be debris dam, or narrow channel area. A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream. B. riffle as wide as stream and riffle length is not 2X stream width. C. riffle not as wide as stream and riffle length is not 2X stream width. D. riffles absent. C. riffle not as wide as stream and riffle length is not 2X stream width. D. riffles absent. C. riffle not as wide as stream and riffle length is not 2X stream width. D. riffles absent. FACE UPSTREAM FACE UPSTREAM FACE UPSTREAM FACE UPSTREAM A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. D. for a comparison of the comparison o	V. Riffle Habitats		013
A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream		t Riffles	Infrequent
B. triffle as wide as stream but riffle length is not 2X stream width	Scor	e Score	e
C. riffle not as wide as stream and riffle length is not 2X stream width	A. well defined riffle and run, riffle as wide as stream and extends 2X width of stream 16	12	
C. riffle not as wide as stream and riffle length is not 2X stream width	B. riffle as wide as stream but riffle length is not 2X stream width	7	
Channel Slope: Typical for are Steep=fast flow Low=like a coastal stream Subtotal Y. FACE UPSTREAM Left Bank Rt. Bank Score Score Score A. Banks stable little evidence of crosion or bank failure(except outside of bends), little potential for crosion.			
Channel Slope: Typical for area Steep=fast flow Low=like a coastal stream Subtotal Yes Y	FRANCE AND EAST OF BLANCE AND		
FACE UPSTREAM A. Banks stable 1. little evidence of erosion or bank failure (except outside of bends), little potential for erosion. The control of the c		Su	btotal 4
FACE UPSTREAM A. Banks stable 1. little evidence of erosion or bank failure (except outside of bends), little potential for erosion. The control of the c	VI Pank Stability and Vagatation		
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion		Laft Dank	D+ Donk
A. Banks stable 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. 1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. 1. diverse trees, shrubs, grass; plants healthy with good root systems	FACE OF STREAM		
1. little evidence of erosion or bank failure(except outside of bends), little potential for erosion. B. Erosion areas present 1. diverse trees, shrubs, grass; plants healthy with good root systems	A Panks stable	Score	Score
B. Erosion areas present 1. diverse trees, shrubs, grass; plants healthy with good root systems		(3)	(F)
1. diverse trees, shrubs, grass; plants healthy with good root systems. 6 6 6 2. few trees or small trees and shrubs; vegetation appears generally healthy. 5 5 5 3 3. sparse mixed vegetation; plant types and conditions suggest poorer soil binding. 3 3 3 4 mostly grasses, few if any trees and shrubs, high erosion and failure potential at high flow. 2 2 2 5 5. little or no bank vegetation, mass erosion and bank failure evident. 0 0 0 Total 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		JII (1)	W.
2. few trees or small trees and shrubs; vegetation appears generally healthy		6	
Score Campy Semarks Cam			
Semarks Canopy would block sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric. A. Stream with good canopy with some breaks for light penetration 10			3
Score Campy Semarks Cam			3
Commarks			
Remarks Canopy Semarks Ca	5. little or no bank vegetation, mass erosion and bank failure evident		111
VII. Light Penetration Canopy is defined as tree or vegetative cover directly above the stream's surface. Canopy would block sunlight when the sun is directly overhead. Note shading from mountains, but not use to score this metric. A. Stream with good canopy with some breaks for light penetration			Total 17
Remarks	C. Stream with partial canopy - sunlight and shading are essentially equal D. Stream with minimal canopy - full sun in all but a few areas		7
Comparison Com	E. No canopy and no shading		0
Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond floodplain). Definition: An the riparian zone is any place on the stream banks which allows sediment or pollutants to directly enter the stream, such as pat allown to stream, storm drains, uprooted trees, otter slides, etc. FACE UPSTREAM Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) 1. width > 18 meters. 2. width 12-18 meters. 3. width 6-12 meters. 4. width < 6 meters. 3. width > 18 meters. 4. width > 18 meters. 5. Core B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters. b. width 12-18 meters. c. width 6-12 meters. 1. breaks common	Remarks		Subtotal_Z
Dominant vegetation: Trees Shrubs Grasses Weeds/old field Exotics (kudzu, etc) Score	VIII. Riparian Vegetative Zone Width Definition: Riparian zone for this form is area of natural vegetation adjacent to stream (can go beyond in the riparian zone is any place on the stream banks which allows sediment or pollutants to directly endown to stream, storm drains, uprooted trees, otter slides, etc.	floodplain). Definition: A am, such as pat
A. Riparian zone intact (no breaks) 1. width > 18 meters		Lft. Bank	Rt. Bank
A. Riparian zone intact (no breaks) 1. width > 18 meters	Dominant vegetation: ☐ Trees ☐ Shrubs ☐ Grasses ☐ Weeds/old field ☐ Exotics (kudzu, etc)	Score	Score
2. width 12-18 meters 4 4 3. width 6-12 meters 3 3 4. width < 6 meters			
2. width 12-18 meters. 4 4 3. width 6-12 meters. 3 3 4. width < 6 meters.	1. width > 18 meters	(5)	(5)
3. width 6-12 meters	2. width 12-18 meters	4	4
4. width < 6 meters		3	3
B. Riparian zone not intact (breaks) 1. breaks rare a. width > 18 meters		2	2
1. breaks rare a. width > 18 meters		-	~
a. width > 18 meters 4 4 b. width 12-18 meters 3 3 c. width 6-12 meters 2 2 d. width < 6 meters	그렇지 못 하는 없이 이 집에 가게 하지 않을 것 같아. 이 경험 이 경험 회사 회사 회사 회사 회사 회사 회사 회사 기계		
b. width 12-18 meters		4	4
c. width 6-12 meters			3
d. width < 6 meters			2
2. breaks common		1	1
		1	1
	a. width > 18 meters	2	2

 $\hfill \square$ Disclaimer-form filled out, but score doesn't match subjective opinion-atypical stream.

Remarks

Page Total 40
TOTAL SCORE 0

2

2

1

0

d. width < 6 meters....

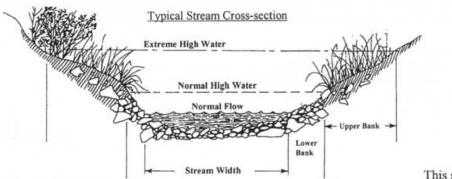

Supplement for Habitat Assessment Field Data Sheet

Diagram to determine bank angle:

90°

45°

135°

This side is 45° bank angle.

Site Sketch:

Other comments: